Environmental Assessment of the Lower Cape Fear River System, 2008

Ву

Michael A. Mallin, Matthew R. McIver and James F. Merritt October 2009

CMS Report No. 09-06
Center for Marine Science
University of North Carolina Wilmington
Wilmington, N.C. 28409

Executive Summary

Multiparameter water sampling for the Lower Cape Fear River Program (LCFRP) has been ongoing since June 1995. Scientists from the University of North Carolina Wilmington (UNCW) perform the sampling effort. The LCFRP currently encompasses 36 water sampling stations throughout the Cape Fear, Black, and Northeast Cape Fear River watersheds. The LCFRP sampling program includes physical, chemical, and biological water quality measurements and analyses of the benthic and epibenthic macroinvertebrate communities, and has in the past included assessment of the fish communities. Principal conclusions of the UNCW researchers conducting these analyses are presented below, with emphasis on the period January - December 2008. The opinions expressed are those of UNCW scientists and do not necessarily reflect viewpoints of individual contributors to the Lower Cape Fear River Program.

The mainstem lower Cape Fear River is a 6th order stream characterized by periodically turbid water containing moderate to high levels of inorganic nutrients. It is fed by two large 5th order blackwater rivers (the Black and Northeast Cape Fear Rivers) that have low levels of turbidity, but highly colored water with less inorganic nutrient content than the mainstem. While nutrients are reasonably high in the river channels, major algal blooms are rare because light is attenuated by water color or turbidity, and flushing is high (Ensign et al. 2004). During periods of low flow (as in 2008) algal biomass as chlorophyll a increases in the river because lower flow causes settling of more solids and improves light conditions for algal growth. Periodically major algal blooms are seen in the tributary stream stations, some of which are impacted by point source discharges. Below some point sources, nutrient loading can be high and fecal coliform contamination occurs. Other stream stations drain blackwater swamps or agricultural areas, some of which periodically show elevated pollutant loads or effects (Mallin et al. 2001).

Average annual dissolved oxygen (DO) levels at the river channel stations for 2008 were similar to the average for 1996-2007. Dissolved oxygen levels were lowest during the summer, often falling below the state standard of 5.0 mg/L at several river and upper estuary stations. There is a dissolved oxygen sag in the main river channel that begins at Station DP below a paper mill discharge and near the Black River input, and persists into the mesohaline portion of the estuary. Mean oxygen levels were highest at the upper river stations NC11 and AC and in the middle to lower estuary at stations M42 to M18. Lowest mainstem average 2008 DO levels occurred at the lower river and upper estuary stations DP, BBT, IC, NAV, HB, BRR and M61 (6.2-6.9 mg/L). As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems. For this low water year we rated one several stations as fair (DO less than 5.0 mg/L on 11-25% of occasions sampled); HB, BRR, M61, DP and IC.

The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River. These rivers are classified as blackwater systems because of their tea colored water. The Northeast Cape Fear River often seems to be more oxygen stressed than the Black River; as such, in 2008 Stations NCF117 and B210,

representing those rivers, had average DO concentrations of 6.4 and 6.8 mg/L, respectively. Several stream stations were severely stressed in terms of low dissolved oxygen during the year 2008. Stations BCRR (upper Burgaw Creek) and SR (South River) had DO levels below 4.0 mg/L 58% of the occasions sampled, with LVC2 (Livingston Creek) 42%, NC403 (Northeast Cape Fear River headwaters) 33% and ANC (Angola Creek), GS (Goshen Swamp) and HAM (Hammond Creek) 25%. Smith Creek (SC-CH) had DO levels below 5.0 mg/L 33% of the time. Considering all sites sampled in 2008, we rated 19% as poor for dissolved oxygen, 28% as fair, and 53% as good.

Annual mean turbidity levels for 2008 were considerably lower than the long-term average, probably a result of low rainfall and lower river discharge. Highest mean turbidities were at the upper estuary site NAV (25 NTU), and the upper river sites N11 (26 NTU), AC (25 NTU) and DP (19 NTU) with turbidities gradually decreasing downstream through the estuary. Turbidity was much lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river, and were low in general in the lower order streams.

Regarding stream stations, chronic or periodic high nitrate levels were found at a number of sites, including BC117 (Burgaw Creek below Burgaw), ROC (Rockfish Creek), 6RC (Six Runs Creek), NC403, LVC2 and PB (Panther Branch). Algal blooms occurred more frequently than usual, particularly from June through September 2008. In the estuary blooms occurred from M61 through M35, and stream stations strongly impacted by algal blooms included ANC, GS, NC403, PB, LRC (Little rockfish Creek) and BCRR. This was a considerable increase over both 2006 and 2007, possibly a result of lower flow (better bloom formation conditions for phytoplankton) yet sufficient nitrogen and phosphorus availability. Several stream stations, particularly BC117, BCRR, ROC, PB, BRN (Browns Creek), HAM, SAR (Northeast Cape Fear River near Sarecta), NC403, GS and LRC showed high fecal coliform bacteria counts on a number of occasions. Periodically biochemical oxygen demand (BOD) concentrations in several Northeast Cape Fear River watershed stream stations (especially N403, GS, ANC) and Station LVC2 in the Cape Fear Watershed were elevated (BOD5 3.0 mg/L or greater). Collection of water column metals was suspended in early 2007 as they are no longer required by NC DWQ.

This report also includes an in-depth look at each subbasin, providing information regarding the results of the North Carolina Division of Water Quality's 2005 Basinwide Management Plan, and providing the UNCW-Aquatic Ecology Laboratory's (AEL) assessments of the 2008 sampling year. The UNCW-AEL utilizes ratings that consider a water body to be of poor quality if the water quality standard for a given parameter is in violation > 25% of the time, of fair quality if the standard is in violation between 11 and 25% of the time, and good quality if the standard is violated no more than 10% of the time. UNCW also considerers nutrient loading in water quality assessments, based on published experimental and field scientific findings.

For the 2008 period UNCW rated 83% of the stations as good in terms of chlorophyll *a*, with one (PB) rated as poor and four (ANC, GS, NC403 and BCRR) rated as fair. For turbidity all of the sites were rated good except for SC-CH, which was rated poor with the brackish water standard of 25 NTU exceeded 33% of occasions sampled. Fecal coliform bacteria counts showed poorer water quality in 2008 compared to 2007, with 52% of the sites rated as poor or fair compared with 41% in 2007. Using the 5.0 mg/L DO standard for the mainstem river stations, and the 4.0 mg/L "swamp water" DO standard for the stream stations and blackwater river stations, 47% of the sites were rated poor or fair for dissolved oxygen, slightly less than in 2007. In addition, by our UNCW standards excessive nitrate and phosphorus concentrations were problematic at a number of stations (Chapter 3).

Table of Contents

1.0	Introduction	1
	1.1 Site Description	2
2.0	Physical, Chemical, and Biological Characteristics of the Lower Cape Fear River and Estuary	
	Physical Parameters	
	Chemical Parameters	
	Biological Parameters	.17
3.0	Water Quality by Subbasin in the Lower Cape Fear River System	.43

1.0 Introduction

Michael A. Mallin Center for Marine Science University of North Carolina Wilmington

The Lower Cape Fear River Program is a unique science and education program that has a mission to develop an understanding of processes that control and influence the ecology of the Cape Fear River, and to provide a mechanism for information exchange and public education. This program provides a forum for dialogue among the various Cape Fear River user groups and encourages interaction among them. Overall policy is set by an Advisory Board consisting of representatives from citizen's groups, local government, industries, academia, the business community, and regulatory agencies. This report represents the scientific conclusions of the UNCW researchers participating in this program and does not necessarily reflect opinions of all other program participants. This report focuses on the period January through December 2008.

The scientific basis of the LCFRP consists of the implementation of an ongoing comprehensive physical, chemical, and biological monitoring program. Another part of the mission is to develop and maintain a data base on the Cape Fear basin and make use of this data to develop management plans. Presently the program has amassed a 13-year (1995-2008) data base freely available to the public. Using this monitoring data as a framework the program goals also include focused scientific projects and investigation of pollution episodes. The scientific aspects of the program are carried out by investigators from the University of North Carolina Wilmington Center for Marine Science. The monitoring program was developed by the Lower Cape Fear River Program Technical Committee, which consists of representatives from UNCW, the North Carolina Division of Water Quality, The NC Division of Marine Fisheries, the US Army Corps of Engineers, technical representatives from streamside industries, the City of Wilmington Wastewater Treatment Plants, Cape Fear Community College, Cape Fear River Watch, the North Carolina Cooperative Extension Service, the US Geological Survey, forestry and agriculture organizations, and others. This integrated and cooperative program was the first of its kind in North Carolina.

Broad-scale monthly water quality sampling at 16 stations in the estuary and lower river system began in June 1995 (directed by Dr. Michael Mallin). Sampling was increased to 34 stations in February of 1996, 35 stations in February 1998, and 36 stations in 2005. The Lower Cape Fear River Program added another component concerned with studying the benthic macrofauna of the system in 1996. This component is directed by Dr. Martin Posey and Mr. Troy Alphin of the UNCW Biology Department and includes the benefit of additional data collected by the Benthic Ecology Laboratory under Sea Grant and NSF sponsored projects in the Cape Fear Estuary. The third major biotic component (added in January 1996) was an extensive fisheries program directed by Dr. Mary Moser of the UNCW Center for Marine Science Research, with subsequent (1999) overseeing by Mr. Michael Williams and Dr. Thomas Lankford of UNCW-CMS. This

program involved cooperative sampling with the North Carolina Division of Marine Fisheries and the North Carolina Wildlife Resources Commission. The fisheries program ended in December 1999, but was renewed with additional funds from the Z. Smith Reynolds Foundation from spring – winter 2000, and has been operational periodically for special projects since that period. The regular sampling that was conducted by UNCW biologists was assumed by the North Carolina Division of Marine Fisheries.

1.1. Site Description

The mainstem of the Cape Fear River is formed by the merging of the Haw and the Deep Rivers in Chatham County in the North Carolina Piedmont. However, its drainage basin reaches as far upstream as the Greensboro area (Fig. 1.1). The mainstem of the river has been altered by the construction of several dams and water control structures. In the coastal plain, the river is joined by two major tributaries, the Black and the Northeast Cape Fear Rivers (Fig. 1.1). These 5th order blackwater streams drain extensive riverine swamp forests and add organic color to the mainstem. The watershed (about 9,149 square miles) is the most heavily industrialized in North Carolina with 244 permitted wastewater discharges with a permitted flow of approximately 425 million gallons per day, and (as of 2000) over 1.83 million people residing in the basin (NCDENR 2005). Approximately 24% of the land use in the watershed is devoted to agriculture and livestock production (NCDENR 2005), with livestock production dominated by swine and poultry operations. Thus, the watershed receives considerable point and non-point source loading of pollutants. However, the estuary is a well-flushed system, with flushing time ranging from 1 to 22 days with a median flushing time of about seven days, much shorter than the other large N.C. estuaries to the north (Ensign et al. 2004).

Water quality is monitored by boat at nine stations in the Cape Fear Estuary (from Navassa to Southport) and one station in the Northeast Cape Fear Estuary (Table 1.1; Fig. 1.1). Riverine stations sampled by boat include NC11, AC, DP, IC, and BBT (Table 1.1; Fig. 1.1). NC11 is located upstream of any major point source discharges in the lower river and estuary system, and is considered to be representative of water quality entering the lower system. BBT is located on the Black River between Thoroughfare (a stream connecting the Cape Fear and Black Rivers) and the mainstem Cape Fear, and is influenced by both rivers. We consider B210 and NCF117 to represent water quality entering the lower Black and Northeast Cape Fear Rivers, respectively. Data has also been collected at stream and river stations throughout the Cape Fear, Northeast Cape Fear, and Black River watersheds (Table 1.1; Fig. 1.1). Data collection at a station in the Atlantic Intracoastal Waterway was initiated in February 1998 to obtain water quality information near the Southport Wastewater Treatment Plant discharge, and there is one station sampled on Smith Creek at Castle Hayne Road (Table 1.1).

1.2. Report Organization

This report contains two sections assessing LCFRP data. Section 2 presents an overview of physical, chemical, and biological water quality data from the 36 individual stations, and provides tables of raw data as well as figures showing spatial or temporal trends. In Section 3 we analyze our data by sub-basin, give information regarding the NC DWQ's 2005 Basinwide Plan, and make UNCW-based water quality ratings for dissolved oxygen, turbidity, chlorophyll *a*, and fecal coliform bacterial abundance. We also utilize other relevant parameters such as nutrient concentrations to aid in these assessments. This section is designed so that residents of a particular sub-basin can see what the water quality is like in his or her area based on LCFRP data collections.

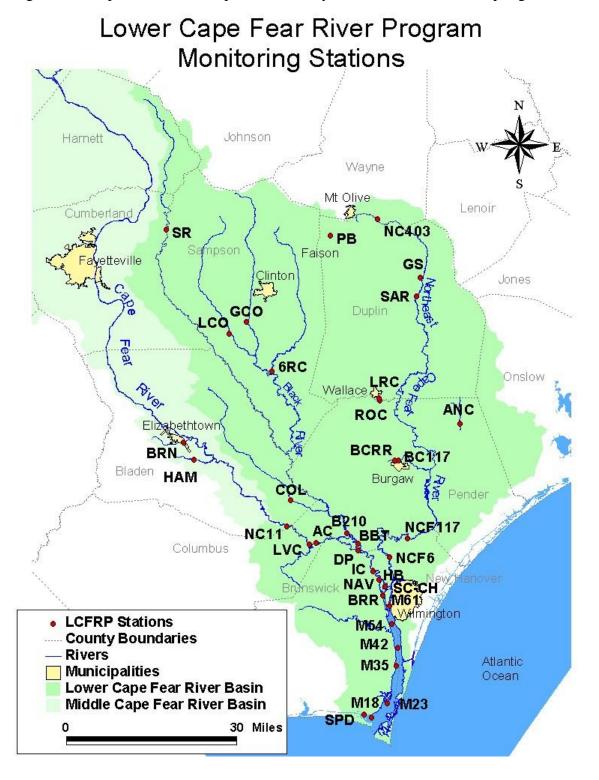
The LCFRP has a website that contains maps and an extensive amount of past water quality, benthos, and fisheries data gathered by the Program available at: www.uncw.edu/cmsr/aquaticecology/lcfrp/

References Cited

- Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. *Computers and Geosciences* 30:501-511.
- Mallin, M.A., S.H. Ensign, M.R. McIver, G.C. Shank and P.K. Fowler. 2001. Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. *Hydrobiologia* 460:185-193.
- NCDENR. 2005. Cape Fear River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources, Division of Water Quality/Planning, Raleigh, NC, 27699-1617.

Table 1.1. Description of sampling locations in the Cape Fear Watershed, 2008, including UNCW designation and NCDWQ station designation number.

UNCW St.	DWQ No.	Location
High order r	river and estu	ary stations
NC11 GPS	B8360000	At NC 11 bridge on Cape Fear River (CFR) N 34.39663 W 78.26785
AC GPS	B8450000	5 km downstream from International Paper on CFR N 34.35547 W 78.17942
DP GPS	B8460000	At DAK America's Intake above Black River N 34.33595 W 78.05337
IC GPS	B9030000	Cluster of dischargers upstream of Indian Cr. on CFR N 34.30207 W 78.01372
B210 GPS	B9000000	Black River at Highway 210 bridge N 34.43138 W 78.14462
BBT GPS	none	Black River between Thoroughfare and Cape Fear River N 34.35092 W 78.04857
NCF117 GPS	B9580000	Northeast Cape Fear River at Highway 117, Castle Hayı N 34.36342 W 77.89678
NCF6 GPS	B9670000	Northeast Cape Fear River near GE dock N 34.31710 W 77.95383
NAV GPS	B9050000	Railroad bridge over Cape Fear River at Navassa N 34.25943 W 77.98767
HB GPS	B9050100	Cape Fear River at Horseshoe Bend N 34.24372 W 77.96980
BRR GPS	B9790000	Brunswick River at John Long Park in Belville N 34.22138 W 77.97868
M61 GPS	B9750000	Channel Marker 61, downtown at N.C. State Port N 34.19377 W 77.95725


M54 GPS	B7950000	Channel Marker 54, 5 km downstream of Wilmington N 34.13933 W 77.94595
M42 GPS	B9845100	Channel Marker 42 near Keg Island N 34.09017 W 77.93355
M35 GPS	B9850100	Channel Marker 35 near Olde Brunswick Towne N 34.03408 W 77.93943
M23 GPS	B9910000	Channel Marker 23 near CP&L intake canal N 33.94560 W 77.96958
M18 GPS	B9921000	Channel Marker 18 near Southport N 33.91297 W 78.01697
SPD GPS	B9980000	1000 ft W of Southport WWT plant discharge on ICW N 33.91708 W 78.03717

Stream stations collected from land

SR GPS	B8470000	South River at US 13, below Dunn N 35.15600 W 78.64013
GCO GPS	B8604000	Great Coharie Creek at SR 1214 N 34.91857 W 78.38873
LCO GPS	B8610001	Little Coharie Creek at SR 1207 N 34.83473 W 78.37087
6RC GPS	B8740000	Six Runs Creek at SR 1003 (Lisbon Rd.) N 34.79357 W 78.31192
BRN GPS	B8340050	Browns Creek at NC 87 N 34.61360 W 78.58462
HAM GPS	B8340200	Hammonds Creek at SR 1704 N 34.56853 W 78.55147
LVC2 GPS	B8441000	on Livingston Creek near Acme N 34.33530 W 78.2011
COL GPS	B8981000	Colly Creek at NC 53 N 34.46500 W 78.26553

ANC GPS	B9490000	Angola Creek at NC 53 N 34.65705 W 77.73485
NC403 GPS	B9090000	Northeast Cape Fear below Mt. Olive Pickle at NC403 N 35.17838 W 77.98028
PB GPS	B9130000	Panther Branch below Bay Valley Foods N 35.13445 W 78.13630
GS GPS	B9191000	Goshen Swamp at NC 11 N 35.02923 W 77.85143
SAR GPS	B9191500	Northeast Cape Fear River near Sarecta N 34.97970 W 77.86251
LRC GPS	B9460000	Little Rockfish Creek at NC 11 N 34.72247 W 77.98145
ROC GPS	B9430000	Rockfish Creek at US 117 N 34.71689 W 77.97961
BCRR GPS	B9500000	Burgaw Canal at Wright St., above WWTP N 34.56334 W 77.93481
BC117 GPS	B9520000	Burgaw Canal at US 117, below WWTP N 34.56391 W 77.92210
SC-CH GPS	B9720000	Smith Creek at Castle Hayne Rd. N 34.25897 W 77.93872

Figure 1.1 Map of the Lower Cape Fear River system and the LCFRP sampling stations.

2.0 Physical, Chemical, and Biological Characteristics of the Lower Cape Fear River and Estuary

Michael A. Mallin and Matthew R. McIver Center for Marine Science University of North Carolina Wilmington

2.1 - Introduction

This section of the report includes a discussion of the physical, chemical, and biological water quality parameters, concentrating on the January-December 2008 Lower Cape Fear River Program monitoring period. These parameters are interdependent and define the overall condition of the river. Physical parameters measured during this study included water temperature, dissolved oxygen, field turbidity and laboratory turbidity, total suspended solids (TSS), salinity, conductivity, pH and light attenuation. The chemical makeup of the Cape Fear River was investigated by measuring the magnitude and composition of nitrogen and phosphorus in the water. Three biological parameters including fecal coliform bacteria, chlorophyll *a* and biochemical oxygen demand were examined.

2.2 - Materials and Methods

All samples and field parameters collected for the estuarine stations of the Cape Fear River (NAV down through M18) were gathered on an ebb tide. This was done so that the data better represented the river water flowing downstream through the system rather than the tidal influx of coastal ocean water. Sample collection and analyses were conducted according to the procedures in the Lower Cape Fear River Program Quality Assurance/Quality Control (QA/QC) manual. Technical Representatives from the LCFRP Technical Committee and representatives from the NC Division of Water Quality inspect UNCW laboratory procedures and periodically accompany field teams to verify proper procedures are followed. We note that our previous Livingston Creek station (LVC) has been discontinued and a new station sampled from the dock of Hexion Specialty Chemicals near Acme (LVC2) was put into operation in 2005.

Physical Parameters

Water Temperature, pH, Dissolved Oxygen, Turbidity, Salinity, Conductivity

Field parameters were measured at each site using a YSI 6920 (or 6820) multi-parameter water quality sonde displayed on a YSI 650 MDS. Each parameter is measured with individual probes on the sonde. At stations sampled by boat (see Table 1.1) physical parameters were measured at 0.1 m, the middle of the water column, and at the bottom (up to 12 m). Occasionally, high flow prohibited the sonde from reaching the actual bottom and measurements were taken as deep as possible. At the terrestrially sampled stations the physical parameters were measured at a depth of 0.1 m. The Aquatic Ecology

Laboratory at the UNCW CMS is State-certified by the N.C. Division of Water Quality to perform field parameter measurements.

Chemical Parameters

Nutrients

All nutrient analyses were performed at the UNCW Center for Marine Science (CMS) for samples collected prior to January 1996. A local State-certified analytical laboratory was contracted to conduct all subsequent analyses except for orthophosphate, which is performed at CMS. The following methods detail the techniques used by CMS personnel for orthophosphate analysis.

Orthophosphate (PO₄⁻³)

Water samples were collected ca. 0.1 m below the surface in triplicate in amber 125 mL Nalgene plastic bottles and placed on ice. In the laboratory 50 mL of each triplicate was filtered through separate 1.0 micron pre-combusted glass fiber filters, which were frozen and later analyzed for chlorophyll a. The triplicate filtrates were pooled in a glass flask, mixed thoroughly, and approximately 100 mL was poured into a 125 mL plastic bottle to be analyzed for orthophosphate. Samples were frozen until analysis.

Orthophosphate analyses were performed in duplicate using an approved US EPA method for the Bran-Lubbe AutoAnalyzer (Method 365.5). In this technique the orthophosphate in each sample reacts with ammonium molybdate and anitmony potassium tartrate in an acidic medium (sulfuric acid) to form an anitmony-phospho-molybdate complex. The complex is then reacted with ascorbic acid and forms a deep blue color. The intensity of the color is measured at a wavelength of 880 nm by a colorimeter and displayed on a chart recorder. Standards and spiked samples were analyzed for quality assurance.

Biological Parameters

Fecal Coliform Bacteria

Fecal coliform bacteria were analyzed at a State-certified laboratory contracted by the LCFRP. Samples were collected approximately 0.1 m below the surface in sterile plastic bottles provided by the contract laboratory and placed on ice for no more than six hours before analysis.

Chlorophyll a

The analytical method used to measure chlorophyll *a* is described in Welschmeyer (1994) and US EPA (1997) and was performed by CMS personnel. Chlorophyll *a* concentrations were determined directly from the 1.0 micron filters used for filtering samples for orthophosphate analysis. All filters were wrapped individually in foil, placed in airtight containers and stored in the freezer. During analysis each filter is immersed in 10 mL of

90% acetone for 24 hours, which extracts the chlorophyll *a* into solution. Chlorophyll *a* concentration of each solution is measured on a Turner 10-AU fluorometer. The fluorometer uses an optimal combination of excitation and emission bandwidth filters which reduces the errors inherent in the acidification technique. The Aquatic Ecology Laboratory at the CMS is State-certified by the N.C. Division of Water Quality for the analysis of chlorophyll *a*.

Biochemical Oxygen Demand (BOD)

Five sites were originally chosen for BOD analysis. One site was located at NC11, upstream of International Paper, and a second site was at AC, about 3 miles downstream of International Paper (Fig.1.1). Two sites were located in blackwater rivers (NCF117 and B210) and one site (BBT) was situated in an area influenced by both the mainstem Cape Fear River and the Black River. For the sampling period May 2000-April 2004 additional BOD data were collected at stream stations 6RC, LCO, GCO, BRN, HAM and COL in the Cape Fear and Black River watersheds. In May 2004 those stations were dropped and sampling commenced at ANC, SAR, GS, N403, ROC and BC117 in the Northeast Cape Fear River watershed. The procedure used for BOD analysis was Method 5210 in Standard Methods (APHA 1995). Samples were analyzed for both 5-day and 20-day BOD. During the analytical period, samples were kept in airtight bottles and placed in an incubator at 20° C. All experiments were initiated within 6 hours of sample collection. Samples were analyzed in duplicate. Dissolved oxygen measurements were made using a YSI Model 5000 meter that was air-calibrated. No adjustments were made for pH since most samples exhibited pH values within or very close to the desired 6.5-7.5 range (pH is monitored during the analysis as well); a few sites have naturally low pH and there was no adjustment for these samples because it would alter the natural water chemistry and affect true BOD.

2.3 - Results and Discussion

This section includes results from monitoring of the physical, biological, and chemical parameters at all stations for the time period January-December 2008. Discussion of the data focuses both on the river channel stations and stream stations, which sometimes reflect poorer water quality than mainstem staions. The contributions of the two large blackwater tributaries, the Northeast Cape Fear River and the Black River, are represented by conditions at NCF117 and B210, respectively. The Cape Fear Region did not experience any significant hurricane activity during this monitoring period (after major hurricanes in 1996, 1998, and 1999). Therefore this report reflects low to medium flow conditions for the Cape Fear River and Estuary.

Physical Parameters

Water temperature

Water temperatures at all stations ranged from 6.0 to 32.3°C and individual station annual averages ranged from 16.5 to 20.9°C (Table 2.1). Highest temperatures occurred during July and August and lowest temperatures during February. Stream stations were generally cooler than river stations, most likely because of shading and lower nighttime air temperatures affecting the shallower waters.

Salinity

Salinity at the estuarine stations ranged from 0.1 to 35.2 practical salinity units (psu) and station annual means ranged from 1.3 to 30.8 psu (Table 2.2), somewhat lower than in 2007. Lowest salinities occurred in December and highest salinities occurred in July. We note that average river discharge as computed by the U.S. Geological Survey (USGS) for 2008 was 3,201 CFS, compared with 5,119 CFS in 2007 and 3,301 CFS in 2006; see http://nc.water.usgs.gov/realtime/real_time_cape_fear.html. In the mid-to-lower estuary annual mean salinity for 2008 was higher than that of the twelve-year average for 1996-2007 for all stations (Figure 2.1), due to low runoff and discharge conditions. Two stream stations, NC403 and PB, had occasional oligohaline conditions due to discharges from pickle production facilities.

Conductivity

Conductivity at the estuarine stations ranged from 0.11 to 53.5 mS/cm and from 0.0 to 13.91 mS/cm at the freshwater stations (Table 2.3). Temporal conductivity patterns followed those of salinity. Dissolved ionic compounds increase the conductance of water, therefore, conductance increases and decreases with salinity, often reflecting river flow conditions due to rainfall. Conductivity may also reveal point source pollution sources, as is seen at BC117, which is below a municipal wastewater discharge. Stations PB and NC403 are below industrial discharges, and often have elevated conductivity. Smith Creek (SC-CH) is an estuarine tidal creek and the conductivity values reflect this (Table 2.3).

рН

pH values ranged from 3.7 to 8.1 and station annual medians ranged from 3.9 to 8.0 (Table 2.4). pH was typically lowest upstream due to acidic swamp water inputs and highest downstream as alkaline seawater mixes with the river water. Low pH values at COL predominate because of naturally acidic blackwater inputs at this near-pristine stream station.

Dissolved Oxygen

Dissolved oxygen (DO) problems are a major water quality concern in the lower Cape Fear River and its estuary, and several of the tributary streams (Mallin et al. 1999; 2000; 2001a;

2001b; 2002a; 2002b; 2003; 2004; 2005a; 2006a; 2006b; 2007; 2008). Surface concentrations for all sites in 2008 ranged from 0.2 to 12.0 mg/L and station annual means ranged from 4.1 to 9.6 mg/L (Table 2.5). Average annual DO levels at the river channel and estuarine stations for 2008 were very similar to the average for 1996-2007 (Figure 2.2). River dissolved oxygen levels were lowest during the summer and early fall (Table 2.5), often falling below the state standard of 5.0 mg/L at several river and upper estuary stations. Working synergistically to lower oxygen levels are two factors: lower oxygen carrying capacity in warmer water and increased bacterial respiration (or biochemical oxygen demand, BOD), due to higher temperatures in summer. Unlike other large North Carolina estuaries (the Neuse, Pamlico and New River) the Cape Fear estuary rarely suffers from dissolved oxygen stratification. This is because despite salinity stratification the oxygen remains well mixed due to strong estuarine gravitational circulation and high freshwater inputs (Lin et al. 2006). Thus, hypoxia in the Cape Fear is present throughout the water column.

There is a dissolved oxygen sag in the main river channel that begins at DP below a paper mill discharge and persists into the mesohaline portion of the estuary (Fig. 2.2). Mean oxygen levels were highest at the upper river stations NC11 and AC and in the middle estuary at stations M42 and M35. Lowest mainstem mean 2008 DO levels occurred at the lower river and upper estuary stations IC, NAV, HB, BRR and M61 (6.6-6.9 mg/L). NAV had DO concentrations less than 4.0 mg/L 17% of occasions sampled, and IC, NCF6, HB, BRR and M61 were below 5.0 mg/L 25% of the time. Discharge of high BOD waste from the paper/pulp mill just above the AC station (Mallin et al. 2003), as well as inflow of blackwater from the Northeast Cape Fear and Black Rivers, has in other years helped to diminish oxygen in the upper estuary. Additionally, algal blooms periodically form behind Lock and Dam #1, and the chlorophyll a they produce is strongly correlated with BOD at Station NC11 (Mallin et al. 2006b); thus the blooms do contribute to lower DO in the river. As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems.

The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River (NCF117 2008 mean = 6.4, NCF6 = 6.7, B210 2008 mean = 6.8). These rivers are classified as blackwater systems because of their tea colored water. As the water passes through swamps en route to the river channel, tannins from decaying vegetation leach into the water, resulting in the observed color. Decaying vegetation on the swamp floor has an elevated biochemical oxygen demand and usurps oxygen from the water, leading to naturally low dissolved oxygen levels. Runoff from concentrated animal feeding operations (CAFOs) may also contribute to chronic low dissolved oxygen levels in these blackwater rivers (Mallin et al. 1998; 1999; 2006; Mallin 2000). We note that phosphorus and nitrogen (components of animal manure) levels are positively correlated with BOD in the blackwater rivers and their major tributaries (Mallin et al. 2006b).

In the past the Northeast Cape Fear River has often been more oxygen stressed than the Black River, and in 2008 Stations NCF117 DO concentrations were again somewhat lower than at B210 (means 6.4 and 6.8 mg/L, respectively). Several stream stations were severely stressed in terms of low dissolved oxygen during the year 2008. Stations SR and

BCRR had DO levels below 4.0 mg/L 58% of the occasions sampled, with LVC2 42%, NC403 33%, and ANC, GS and HAM 25% (Table 2.5). Smith Creek had DO levels below 5.0 mg/L 33% of the time. Some of this can be attributed to low summer water conditions and some potentially to CAFO runoff; however point-source discharges also likely contribute to low dissolved oxygen levels at NC403 and possibly SR, especially via nutrient loading (Mallin et al. 2001a; 2002a; 2004). Hypoxia is thus a widespread problem, with 47% of the sites impacted in 2008.

Field Turbidity

Field turbidity levels ranged from 0 to 145 nephelometric turbidity units (NTU) and station annual means ranged from 1 to 26 NTU (Table 2.6). Annual mean turbidity levels for 2008 were considerably lower than the long-term average at the main river and estuarine stations (Fig. 2.3) probably a result of low river discharge and a lack of major stormwater runoff activity. Highest mean turbidities were at NC11 (26 NTU), NAV (25 NTU) and AC (25 NTU) with turbidities generally low in the middle to lower estuary (Figure 2.3). Turbidity was lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river.

Note: In addition to the laboratory-analyzed turbidity that are required my NCDWQ for seven locations, the LCFRP uses nephelometers designed for field use, which allows us to acquire in situ turbidity from a natural situation. North Carolina regulatory agencies are required to use turbidity values from water samples removed from the natural system, put on ice until arrival at a State-certified laboratory, and analyzed using laboratory nephelometers. Standard Methods notes that transport of samples and temperature change alters true turbidity readings. Our analysis of samples using both methods shows that lab turbidity is nearly always lower than field turbidity; thus we do not discuss lab turbidity in this report.

Total Suspended Solids

Total suspended solid (TSS) values system wide ranged from 1 to 96 mg/L with station annual means from 2 to 19 mg/L (Table 2.7). The overall highest values were at NCF6, followed by the upper river stations NC11, and AC, and the upper estuary site NAV. In the stream stations TSS was generally considerably lower than the river and estuary, except for BCRR and PB. Although total suspended solids (TSS) and turbidity both quantify suspended material in the water column, they do not always go hand in hand. High TSS does not mean high turbidity and vice versa. This anomaly may be explained by the fact that fine clay particles are effective at dispersing light and causing high turbidity readings, while not resulting in high TSS. On the other hand, large organic or inorganic particles may be less effective at dispersing light, yet their greater mass results in high TSS levels. While there is no NC ambient standard for TSS, many years of data from the lower Cape Fear watershed indicates that 25 mg/L can be considered elevated.

Light Attenuation

The attenuation of solar irradiance through the water column is measured by a logarithmic function (k) per meter. The higher this light attenuation coefficient is the more strongly light is attenuated (through absorbance or reflection) in the water column. River and estuary light attenuation coefficients ranged from 0.74 to 7.77/m and station annual means ranged from 1.25 at M18 to 4.22 /m at NAV (Table 2.8). In the Cape Fear system, light is attenuated by both turbidity and water color.

High light attenuation did not always coincide with high turbidity. Blackwater, though low in turbidity, will attenuate light through absorption of solar irradiance. At NCF6 and BBT, blackwater stations with moderate turbidity levels, light attenuation was high. Compared to other North Carolina estuaries the Cape Fear has high average light attenuation. The high average light attenuation is a major reason why phytoplankton production in the major rivers and the estuary of the LCFR is generally low. Whether caused by turbidity or water color this attenuation tends to limit light availability to the phytoplankton (Mallin et al. 1997; 1999; 2004).

Chemical Parameters – Nutrients

Total Nitrogen

Total nitrogen (TN) is calculated from TKN (see below) plus nitrate; it is not analyzed in the laboratory. TN ranged from 50 to 27,300 $\mu g/L$ and station annual means ranged from 371 to 12,557 $\mu g/L$ (Table 2.9). Mean total nitrogen in 2008 was slightly higher than the twelve-year mean at most river stations, but lower than the mean in the lower estuary (Figure 2.4). Previous research (Mallin et al. 1999) has shown a positive correlation between river flow and TN in the Cape Fear system. In the main river total nitrogen concentrations were highest at NC11, entering the system, then remained fairly constant down the river and declined from mid-estuary into the lower estuary, most likely reflecting uptake of nitrogen into the food chain through algal productivity and subsequent grazing by planktivores as well as through dilution and marsh denitrification. The blackwater rivers maintained TN concentrations considerably lower than those found in the mainstem Cape Fear River. One stream station, BC117, had a very high mean of 12,557 $\mu g/L$, likely from the upstream Town of Burgaw wastewater discharge. ROC and LVC2 also had comparatively high TN values among the stream stations. Temporal patterns for TN were not evident.

Nitrate+Nitrite

Nitrate+nitrite (henceforth referred to as nitrate) is the main species of inorganic nitrogen in the Lower Cape Fear River. Concentrations system wide ranged from 10 (detection limit) to 27,300 μ g/L and station annual means ranged from 45 to 11,832 μ g/L (Table 2.10). The highest average riverine nitrate levels were at AC (764 μ g/L) and NC11 (739 μ g/L) indicating that much of this nutrient is imported from upstream. Moving downstream, nitrate levels decrease most likely as a result of uptake by primary producers, microbial

denitrification in riparian marshes and tidal dilution. Despite this, the rapid flushing of the estuary (Ensign et al. 2004) permits sufficient nitrate to enter the coastal ocean in the plume and contribute to offshore productivity (Mallin et al. 2005b). Nitrate can limit phytoplankton production in the lower estuary in summer (Mallin et al. 1999). The blackwater rivers carried lower loads of nitrate compared to the mainstem Cape Fear stations; i.e. the Northeast Cape Fear River (NCF117 mean = 283 μ g/L) and the Black River (B210 = 220 μ g/L). No clear temporal pattern was observable for nitrate.

Several stream stations showed high levels of nitrate on occasion including BC117, ROC, 6RC, LVC2, NC403 and LCO. NC403 and LVC2 are downstream of industrial wastewater discharges and LCO, ROC and 6RC primarily receive non-point agricultural or animal waste drainage. BC117 always showed very high nitrate levels. The Town of Burgaw wastewater plant, upstream of BC117, has no nitrate discharge limits. Over the past several years a considerable number of experiments have been carried out by UNCW researchers to assess the effects of nutrient additions to water collected from blackwater streams and rivers (i.e. the Black and Northeast Cape Fear Rivers, and Colly and Great Coharie Creeks). These experiments have collectively found that additions of nitrogen (as either nitrate, ammonium, or urea) significantly stimulate phytoplankton production and BOD increases. Critical levels of these nutrients were in the range of 0.2 to 0.5 mg/L as N (Mallin et al. 1998; Mallin et al. 2001a; Mallin et al. 2002a, Mallin et al. 2004). Thus, we conservatively consider nitrate concentrations exceeding 0.5 mg/L as N in Cape Fear watershed streams to be potentially problematic to the stream's environmental health.

Ammonium

Ammonium concentrations ranged from 5 (detection limit) to 1,810 μ g/L and station annual means ranged from 5 to 676 μ g/L (Table 2.11). River areas with the highest mean ammonium levels this monitoring period included AC, which is below a pulp mill discharge, andM54, located downstream of the Wilmington South Side Wastewater Treatment Plant discharge. Ocean dilution and biological uptake accounts for decreasing levels in the lower estuary. At the stream stations, areas with periodic high levels of ammonium include BCRR, PB, GS and especially LVC2 (below point sources), which had the highest mean and median ammonium concentrations in the system (Table 2.11).

Total Kjeldahl Nitrogen

Total Kjeldahl Nitrogen (TKN) is a measure of the total concentration of organic nitrogen plus ammonium. TKN ranged from 50 to 9,200 μ g/L and station annual means ranged from 188 to 1,905 μ g/L (Table 2.12). TKN concentration decreases ocean-ward through the estuary, likely due to ocean dilution and food chain uptake of nitrogen. One anomalous peak of 6,200 μ g/L of TN was seen at M42 in July; this was a real number according to the laboratory, but clearly an isolate, and rare excursion in that area of the estuary. Likewise an unusual peak of 9,200 μ g/L occurred at AC in March.

Total Phosphorus

Total phosphorus (TP) concentrations ranged from below detection limit to 3,860 μ g/L and station annual means ranged from 31 to 1,576 μ g/L (Table 2.13). Mean TP for 2008 was approximately equal to the twelve-year mean in all areas except the Northeast Cape Fear River, where it was much higher than the mean (Figure 2.5). In the river TP is highest at the upper riverine channel stations and declines downstream into the estuary. Some of this decline is attributable to the settling of phosphorus-bearing suspended sediments, yet incorporation of phosphorus into bacteria and algae is also responsible. A temporal pattern of higher summer TP is a result of increasing orthophosphate during the summer.

The experiments discussed above in the nitrate subsection also involved additions of phosphorus, either as inorganic orthophosphate or a combination of inorganic plus organic P. The experiments showed that additions of P exceeding 0.5 mg/L led to significant increases in bacterial counts, as well as significant increases in BOD over control. Thus, we consider concentrations of phosphorus above 0.5 mg/L (500 μ g/L) to be potentially problematic to blackwater streams. Streams periodically exceeding this critical concentration included BC117, GCO, GS and NC403. Some of these stations (BC117, NC403) are downstream of industrial or wastewater discharges, while GS and GCO are in non-point agricultural areas.

Orthophosphate

Orthophosphate ranged from undetectable to 2,820 μ g/L and station annual means ranged from 7 to 1,108 μ g/L (Table 2.14). Much of the orthophosphate load is imported into the Lower Cape Fear system from upstream areas, as NC11 or AC typically has the highest levels. The Northeast Cape Fear River had higher orthophosphate levels than the Black River. Orthophosphate can bind to suspended materials and is transported downstream via particle attachment; thus high levels of turbidity at the uppermost river stations may be an important factor in the high orthophosphate levels. Turbidity declines toward the estuary because of settling, and orthophosphate concentration also declines. In the estuary, primary productivity helps reduce orthophosphate concentrations by assimilation into biomass. Orthophosphate levels typically reach maximum concentrations during summertime, when anoxic sediment releases bound phosphorus. Also, in the Cape Fear Estuary, summer algal productivity is limited by nitrogen, thereby allowing the accumulation of orthophosphate (Mallin et al. 1997; 1999). In spring, productivity in the estuary is usually limited by phosphorus (Mallin et al. 1997; 1999).

The stream station BC117 had very high orthophosphate levels, and ROC and GCO had comparatively high levels. BC117 is below a municipal wastewater discharge, and ROC and GCO are impacted by agriculture/animal waste runoff.

Chemical Parameters - EPA Priority Pollutant Metals

The LCFRP had previously sampled for water column metals (EPA Priority Pollutant Metals) on a bimonthly basis. However, as of 2007 this requirement was suspended by the NC Division of Water Quality and these data are no longer collected by the LCFRP.

Biological Parameters

Chlorophyll a

During this monitoring period chlorophyll a was moderate in the river but relatively high at the estuarine stations (Table 2.15). At many of the estuarine stations chlorophyll a for 2008 was approximately double that of the twelve-year mean for those sites (Figure 2.6). Two moderate algal blooms occurred at Station NC11, with chlorophyll a levels of 24 μ g/L in July and 34 μ g/L in August. At this site it has been demonstrated that chlorophyll a biomass is significantly correlated with biochemical oxygen demand (BOD5 – Mallin et al. 2006b). High chlorophyll at NC11 may represent remnants of algal blooms forming in the more lentic (lake-like) conditions found above Lock and Dam #1. System wide, chlorophyll a ranged from undetectable to 376.0 μ g/L and station annual means ranged from 1.4 – 41.9 μ g/L; these numbers represent a considerable increase in phytoplankton production throughout the system compared with 2007. Production of chlorophyll a biomass is usually low to moderate in the rivers and estuary primarily because of light limitation by turbidity in the mainstem and high organic color and low inorganic nutrients in the blackwater rivers. However, in 2008 phytoplankton biomass as chlorophyll a was unusually elevated from M61 to M35 during the months of June – September (Table 2.15).

Spatially, highest values are normally found in the mid-to-lower estuary stations because light becomes more available downstream of the estuarine turbidity maximum (Table 2.6). On average, flushing time of the Cape Fear estuary is rapid, ranging from 1-22 days with a median of 6.7 days (Ensign et al. 2004). This does not allow for much settling of suspended materials, leading to light limitation of phytoplankton production. However, the low flow conditions prevailing in 2008 allowed for clearer water through less suspended material and less blackwater swamp inputs. Thus, chlorophyll *a* concentrations in the estuary were larger than the average for the preceding eleven years (Figure 2.6). Highest chlorophyll *a* concentrations were found from June through September in both the main channels and at the stream stations.

Substantial phytoplankton blooms occasionally occur at the stream stations, with more than usual occurring in 2008 (Table 2.15). These streams are generally shallow, so vertical mixing does not carry phytoplankton cells down below the critical depth where respiration exceeds photosynthesis. Thus, when lower flow conditions prevail, elevated nutrient conditions (such as are periodically found in these stream stations) can lead to algal blooms. In areas where the forest canopy opens up large blooms can occur. When blooms occur in blackwater streams they can become sources of BOD upon death and decay, reducing further the low summer dissolved oxygen conditions common to these

waters (Mallin et al. 2001a; 2002a; 2004; 2006b). Stream algal blooms in 2008 were particularly high at GS, PB, NC403, BCRR and ANC (Table 2.15).

Biochemical Oxygen Demand

For the mainstem river, mean annual five-day biochemical oxygen demand (BOD5) concentrations were approximately equivalent between NC11 and AC, suggesting that in 2008 (as was the case with 2007) there were no discernable effects of BOD loading from the nearby pulp/paper mill inputs (Table 2.16). BOD was somewhat lower during the winter than summer.

Results of 2008 BOD analyses from several stream stations in the Northeast Cape Fear River watershed can be seen in Table 2.16. ANC, GS, and N403 all showed large (> 4.3 mg/L) individual BOD5 measurements during 2008, particularly during summer. Station N403 is below point sources, but the other two sites are non-point runoff areas.

Fecal Coliform Bacteria

Fecal coliform (FC) bacterial counts ranged from 1 to >30,000 CFU/100 mL and station annual geometric means ranged from 5 to 788 CFU/100 mL (Table 2.17). The state human contact standard (200 CFU/100 mL) was exceeded at the mainstem sites only rarely in 2008. Geometric mean fecal coliform counts in 2008 in the Cape Fear, Black, and Northeast Cape Fear Rivers were high compared with the twelve-year average, whereas the estuarine counts were approximately equal to the long-term geometric means (Figure 2.7).

All stream stations surpassed the state standard for human contact of 200 CFU/100 mL on at least one occasion and many were particularly problematic. During 2008 BC117 exceeded the state standard 100% of the time; BRN 58%, 6RC, SAR and HAM 50%, PB, ROC, and BCRR 42%, N403 and SR 33%, and ANC, GS, LRC 25% of the time. BC117, NC403, and PB are located below point source discharges and the other sites are primarily influenced by non-point source pollution. Overall, elevated fecal coliform counts are problematic in this system, with 52% of the stations impacted in 2008, a worsening from the previous year 2007.

2.4 - References Cited

- APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, D.C.
- Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. *Computers and Geosciences* 30:501-511.
- Lin, J. L. Xie, L.J. Pietrafesa, J. Shen, M.A. Mallin and M.J. Durako. 2006. Dissolved oxygen stratification in two microtidal partially-mixed estuaries. *Estuarine, Coastal and Shelf Science*. 70:423-437.

- Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1997. Nutrient limitation and eutrophication potential in the Cape Fear and New River Estuaries. Report No. 313. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 1998. Effect of organic and inorganic nutrient loading on photosynthetic and heterotrophic plankton communities in blackwater rivers. Report No. 315. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1999. Alternation of factors limiting phytoplankton production in the Cape Fear Estuary. *Estuaries* 22:985-996.
- Mallin, M.A. 2000. Impacts of industrial-scale swine and poultry production on rivers and estuaries. *American Scientist* 88:26-37.
- Mallin, M.A., M.H. Posey, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2000. *Environmental Assessment of the Lower Cape Fear River System, 1999-2000.* CMS Report No. 00-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 2001a. Effect of nitrogen and phosphorus loading on plankton in Coastal Plain blackwater streams. *Journal of Freshwater Ecology* 16:455-466.
- Mallin, M.A., M.H. Posey, T.E. Lankford, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2001b. *Environmental Assessment of the Lower Cape Fear River System, 2000-2001.* CMS Report No. 01-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon, M.R. McIver and S.H. Ensign. 2002a. Seeking science-based nutrient standards for coastal blackwater stream systems. Report No. 341. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., M.H. Posey, T.E. Lankford, M.R. McIver, H.A. CoVan, T.D. Alphin, M.S. Williams and J.F. Merritt. 2002b. *Environmental Assessment of the Lower Cape Fear River System, 2001-2002.* CMS Report No. 02-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver, H.A. Wells, M.S. Williams, T.E. Lankford and J.F. Merritt. 2003. *Environmental Assessment of the Lower Cape Fear River System, 2002-2003.* CMS Report No. 03-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.

- Mallin, M.A., M.R. McIver, S.H. Ensign and L.B. Cahoon. 2004. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. *Ecological Applications* 14:823-838.
- Mallin, M.A., M.R. McIver, T.D. Alphin, M.H. Posey and J.F. Merritt. 2005a. *Environmental Assessment of the Lower Cape Fear River System, 2003-2004.* CMS Report No. 05-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon and M.J. Durako. 2005b. Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems. *Estuarine*, *Coastal and Shelf Science* 62:55-62.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2006a. *Environmental Assessment of the Lower Cape Fear River System, 2005.* CMS Report No. 06-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., V.L. Johnson, S.H. Ensign and T.A. MacPherson. 2006b. Factors contributing to hypoxia in rivers, lakes and streams. *Limnology and Oceanography* 51:690-701.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2007. *Environmental Assessment of the Lower Cape Fear River System, 2006.* CMS Report No. 07-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2008. *Environmental Assessment of the Lower Cape Fear River System, 2007.* CMS Report No. 08-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- U.S. EPA 1997. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices, 2nd Ed. EPA/600/R-97/072. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll *b* and phaeopigments. *Limnology and Oceanography* 39:1985-1993.

Table 2.1 Water temperature (°C) during 2008 at the Lower Cape Fear River Program stations.

JAN 10.1 11.0		1011		74147		3	7	710	плиошт		A	17	TOO	י	NCFO
	0 10.8		11.5	11.7	11.6	11.8	11.9	11.3	JAN	9.6	6.6	9.6	9.5	9.4	11.5
13.1			13.7	13.4	13.6	13.6	13.1	13.0	FEB		11.9	12.3	12.3	12.7	12.9
13.4			14.7	14.9	15.0	14.9	14.4	14.8	MAR		13.2	13.2	13.7	13.2	13.4
19.9			20.3	20.8	20.5	19.8	19.4	20.2	APR		17.6	17.7	16.6	17.2	17.9
22.3			22.4	22.7	22.6	22.3	21.7	21.9	MAY		22.1	21.3	21.4	21.9	23.0
25.6			26.8	26.4	29.3	29.1	28.2	28.7	NOI		28	27.8	27.6	28.4	27.9
29.5		29.9	28.9	28.6	28.2	28.0	27.8	28.2	Tor		29.4	29.1	29.2	29.1	28.5
31.3			30.8	30.8	31.2	30.3	30.2	30.5	AUG		28.0	27.1	26.8	27.7	28.5
27.5			28.2	28.1	28.7	28.0	28.3	28.1	SEP		26.1	26.3	26.2	29.1	27.9
23.4			23.5	24.3	24.7	25.4	24.9	24.6	OCT		22.2	22.1	21.9	22.3	23.1
15.4			16.2	16.2	16.3	16.5	16.4	15.4	NOV		13.2	13.0	12.3	13.2	14.3
9.8			10.2	10.5	10.6	11.3	11.4	10.8	DEC		11.1	11.3	11.5	11.8	12.0
20.0			20.6	20.7	21.0	20.9	20.6	20.6	mean		19.4	19.2	19.1	19.7	20.1
7.8			7.2	7.1	7.4	7.2	7.1	7.4	std dev		7.4	7.2	7.2	7.6	7.1
21.1			21.4	21.8	21.6	21.1	20.6	21.1	median		19.9	19.5	19.0	19.6	20.5
31.3			30.8	30.8	31.2	30.3	30.2	30.5	max		29.4	29.1	29.2	29.1	28.5
8.6			10.2	10.5	10.6	11.3	11.4	10.8	mim		6.6	9.6	9.5	9.4	11.5

month	ANC	SAR	es	NC403	PB	LRC	ROC	BC117]	BCRR	month	6RC	Γ CO	025	SR	BRN	HAM	month	NCF117	B210	COL	LVC2	SC-CH
JAN	10.9	13.2	13.2	12.3	13.4	13.5	12.4	15.3	11.2	JAN	6.9	6.9	7.3	7.4	8.6	9.9	JAN	10.3	10.2	11.8		11.8
FEB	17.5	16.5	17.1	15.6	15.3	13.8	15.9	16.4	13.4	FEB	6.7	9.1	10.3	9.3	11.6	10.3	FEB	11.5	14.1	14.1	11.6	11.6
MAR	15.7	14.9	15.3	15.2	12.8	13.8	15.9	12.7	14.2	MAR	12.8	12.5	13.7	13.2	13.7	13.2	MAR	12.9	14.1	15.1	13.6	15.4
APR	18.0	16.2	16.6	17.2	16.2	16.7	16.4	16.0	15.9	APR	16.0	15.5	15.5	15.6	15.5	15.2	APR	17.4	16.4	15.5	17.5	18.0
MAY	22.2	17.8	21.8	23.3	24.8	22.1	20.7	18.9	19.8	MAY	20.9	21.0	21.3	20.8	20.6	19.3	MAY	21.8	20.4	18.1	19.8	22.2
NOL	30.2	30.1	29.6	30.2	30.9	29.4	27.1	26.2	25.0	JUN	25.3	24.7	26.1	23.0	20.7	20.8	JUN	29.3	30.6	27.7	28.0	30.6
M	28.0	26.5	26.7	26.8	27.2	26.5	26.5	25.6	24.5	IOL	22.7	22.8	25.0	24.7	22.9	22.3	nr	28.5	28.6		27.0	28.8
AUG	25.3	23.5	24.4	23.3	22.9	23.0	22.3	21.9	21.7	AUG	26.9	26.5	26.7	26.6	27.0	25.4	AUG	30.5	29.5	26.7	28.5	30.9
SEP	25.3	24.7	25.2	24.5	25.7	23.5	23.2	22.6	22.7	SEP	24.5	24.3	24.8	24.3	24.3	23.3	SEP	27.6	25.3	23.8	25.4	28.1
OCT	20.8	19.9	20.5	20.5	20.2	19.5	21.0	19.3	20.1	OCT	18.1	18.2	18.4	18.7	18.6	17.7	OCT	21.2	18.8	17.2	18.6	22.8
NOV	7.8	7.0	8.0	7.8	7.0	7.9	9.9	8.2	6.3	NOV	13.5	13.3	13.8	13.2	14.4	13.3	NOV	11.5	8.5	7.0	8.3	11.5
DEC	7.4	6.2	8.2	7.1	0.9	7.2	6.1	7.3	6.1	DEC	10.0	9.6	7.6	0.6	10.6	10.3	DEC	10.2	10.6	12.5	12.3	12.0
mean	19.1	18.0	18.9	18.7	18.5	18.1	17.8	17.5	16.7	mean	17.3	17.0	17.7	17.1	17.5	16.5	mean	19.4	18.9	17.2	18.3	20.3
std dev		7.4	7.0	7.4	8.0	7.1	6.9	6.1	9.9	std dev	8.9	8.9	7.0	8.9	5.7	5.9	std dev	8.1	7.9	6.5	7.5	7.9
median		17.2	18.8	18.9	18.2	18.1	18.6	17.7	17.9	median	17.1	16.9	17.0	17.2	17.1	16.5	median	19.3	17.6	15.5	18.1	20.1
max	30.2	30.1	29.6	30.2	30.9	29.4	27.1	26.2	25.0	max	26.9	26.5	26.7	26.6	27.0	25.4	max	30.5	30.6	27.7	28.5	30.9
min		6.2	8.0	7.1	0.9	7.2	6.1	7.3	6.1	min	6.9	6.9	7.3	7.4	8.6	9.9	min	10.2	8.5	7.0	8.3	11.5

Table 2.2 Salinity (psu) during 2008 at the Lower Cape Fear River Program estuarine stations.

month	NAV	HB	BRR	M61	M54	M42	M35	M23	M18	SPD	NCF6
JAN	3.3	5.4	4.6	8.4	10.8	13.8	20.4	25.1	31.2	27.4	7.6
FEB	0.1	0.5	1.1	5.9	8.0	9.6	14.3	23.9	27.6	28.3	0.3
MAR	0.1	0.1	0.1	0.4	1.5	4.6	10.2	20.2	30.4	21.4	0.1
APR	0.1	0.1	0.1	4.0	6.5	7.2	13.6	21.8	29.0	22	0.1
MAY	1.3	2.3	1.2	3.1	8.2	10.8	16.9	25.5	31.8	27.1	1.6
NOI	2.1	5.8	7.3	11.8	13.8	17.3	21.5	27.6	31.6	32.9	4.6
TOL	1.2	3.1	5.5	12.3	18.4	21.0	24.3	31.9	34.2	35.2	12.0
AUG	5.9	9.9	8.3	13.0	16.8	19.9	22.8	32.5	34.6	32.1	13.3
SEP	0.5	1.2	8.0	4.3	7.9	12.1	19.8	29.1	32.0	29.2	5.8
OCT	1.1	1.6	8.0	3.0	7.1	12.3	16.1	25.3	33.3	29.7	7.0
NOV	0.3	4.5	8.9	13.6	15.8	17.8	21.4	27.7	30.2	30.9	0.4
DEC	0.1	0.1	2.0	7.7	8.2	10.6	12.9	19.6	24.0	24.9	0.2
mean	1.3	2.6	3.4	7.3	10.3	13.1	17.9	25.9	30.8	28.4	3.9
std dev	1.7	2.4	3.3	4.5	5.0	5.1	4.5	4.2	2.9	4.2	8.4
median	8.0	2.0	1.6	8.9	8.2	12.2	18.4	25.4	31.4	28.8	1.2
max	5.9	9.9	8.9	13.6	18.4	21.0	24.3	32.5	34.6	35.2	13.3
mim	0.1	0.1	0.1	0.4	1.5	4.6	10.2	19.6	24.0	21.4	0.1

■ 1995-2007 NCF6 □ 2008 Figure 2.1 Salinity at the Lower Cape Fear River Program estuarine stations, 1995-2007 SPD M18 M23 M35 versus 2008. M42 M54 M61 BRR HB NAV 35 7 30 25 10 20 15 S 0 (usq) ViinilaS

Table 2.3 Specific Conductivity (mS/cm) during 2008 at the Lower Cape Fear River Program stations.

	SC-CH 6.40 11445 11.53 0.53 0.53 4.16 11.24 24.48 13.43 3.44 4.23 3.44 7.12 7.44 7.12 4.20 0.53
	LVC2 S 0.25 0.26 0.17 0.13 0.14 0.18 0.19 0.19 0.10 0.13 0.13 0.13 0.15 0.15
	COL 1 0.21 0.15 0.16 0.13 0.09 0.08 0.00 0.10 0.10 0.00 0.00 0.00 0.00
	8210 0.16 0.13 0.10 0.07 0.08 0.09 0.11 0.10 0.09 0.00 0.00 0.00 0.00
	NCF117 0.25 0.21 0.15 0.10 0.13 0.16 0.18 0.17 0.20 0.19 0.19 0.08 0.19 0.08 0.19 0.09
NCF6 13.16 0.60 0.22 0.15 3.02 8.31 20.28 22.20 10.35 1.42 0.88 6.74 6.74 0.15	month N JAN FEB MAR APR MAY JUL JUL JUL DEC OCT NOV DEC mean std dev median max
IC 0.26 0.18 0.13 0.09 0.14 0.10 0.14 0.14 0.14 0.14 0.14 0.14	
BBT 0.19 0.15 0.10 0.08 0.12 0.13 0.11 0.11 0.11 0.12 0.07 0.07	HAM 0.22 0.22 0.17 0.08 0.16 0.09 0.15 0.18 0.17 0.18 0.17 0.17 0.07
DP 0.20 0.21 0.18 0.12 0.14 0.23 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	BRN 0.15 0.16 0.16 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.03
AC 0.16 0.14 0.27 0.13 0.29 0.20 0.10 0.10 0.12 0.10 0.13 0.35	SR 0.15 0.13 0.11 0.08 0.00 0.07 0.07 0.07 0.07 0.07 0.09 0.09
NC11 0.12 0.14 0.10 0.09 0.09 0.05 0.15 0.15 0.10 0.10 0.00 0.00 0.01 0.01	GCO 0.21 0.19 0.19 0.01 0.17 0.18 0.08 0.10 0.15 0.15 0.16 0.17
JAN FEB MAR APR JUN JUL AUG SEP OOCT NOV DEC mean std dev max min	LCO 0.13 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09
	6RC 0.15 0.13 0.03 0.03 0.01 0.13 0.09 0.13 0.13 0.13 0.13 0.13 0.13
	Month 6 JAN C JAN C JAN C JUL C JU
5PD 42.68 43.85 34.05 34.89 42.09 50.45 53.50 45.20 45.20 45.20 45.36 39.16 5.35 53.50 53.50 34.05	
M18 SPD 47.94 42.68 43.00 43.85 46.71 34.05 44.79 34.89 48.61 42.09 48.52 50.45 52.12 53.50 52.85 49.36 49.18 45.20 50.76 45.56 46.37 47.36 47.39 44.01 4.13 59.3 48.23 53.50 52.85 53.50 37.89 34.05	BCRR month 0.29 JAN 0.28 FEB 0.21 MAR 0.21 MAY 0.21 JUN 0.60 JUL 0.20 AUG 0.24 SEP 0.27 OCT 0.28 DEC 0.28 mean 0.11 std dev 0.26 meatian 0.27 max 0.17 minax
	month JAN FEB MAR APR APR AUG JUN JUL AUG SEP OCT NOV DEC mean std dev median max min
M18 47.94 43.00 46.71 44.79 48.61 48.52 52.85 52.85 69.76 46.37 37.89 413 48.23 52.85	BCRR month 0.29 JAN 0.28 FEB 0.21 MAR 0.21 MAY 0.21 JUN 0.60 JUL 0.20 AUG 0.24 SEP 0.27 OCT 0.28 DEC 0.28 mean 0.11 std dev 0.26 meatian 0.27 max 0.17 minax
M23 M18 39.44 47.94 35.64 47.04 32.25 46.71 34.72 44.79 39.75 48.61 43.03 48.52 49.00 52.12 49.91 52.85 49.91 52.85 44.93 49.18 39.65 50.76 40.23 46.37 31.51 37.89 40.21 52.85 49.91 52.85 40.23 47.39 6.03 48.23 39.70 48.23 31.51 37.89	BC117 BCRR month 1.20 0.29 JAN 0.87 0.28 FEB 0.29 0.21 MAR 0.24 0.17 APR 0.38 0.21 MAY 1.09 0.32 JUN 1.13 0.60 JUL 0.55 0.24 SEP 0.59 0.24 SEP 0.57 0.27 OCT 0.45 0.28 DEC 0.63 0.28 mean 0.51 0.26 median 1.20 0.60 max 0.24 0.17 min
M35 M23 M18 32.67 39.44 47.94 23.55 35.64 47.94 23.55 35.25 46.71 22.48 34.72 44.79 27.55 39.75 48.61 34.40 43.03 48.52 38.33 49.00 52.12 36.30 49.91 52.85 31.90 44.93 49.18 26.35 39.65 50.76 34.03 42.95 46.37 21.50 31.51 37.89 40.23 47.39 6.68 40.33 28.86 40.23 47.39 6.68 60.3 47.39 6.78 39.70 48.23 38.33 49.91 52.85 37.73 48.23 38.33 49.91 52.85 17.32 31.51 37.89	ROC BCII7 BCRR month 0.16 1.20 0.29 JAN 0.12 0.29 0.21 MAR 0.09 0.24 0.17 APR 0.11 0.38 0.21 MAY 0.14 1.09 0.32 JUN 0.33 1.13 0.60 JUL 0.14 0.35 0.24 SEP 0.11 0.59 0.24 SEP 0.11 0.59 0.24 SEP 0.12 0.45 0.28 NOV 0.15 0.45 0.28 NOV 0.15 0.40 0.25 DEC 0.15 0.60 0.35 0.11 std dev 0.06 0.35 0.11 median 0.07 0.06 0.35 0.11 max 0.09 0.24 0.17 mix
M42 M35 M23 M18 22.83 32.67 39.44 47.94 16.26 23.55 35.64 43.00 8.22 17.32 32.25 46.71 12.54 22.48 34.72 44.79 18.25 27.55 39.75 48.61 28.18 34.40 43.03 48.52 33.64 38.33 49.00 52.12 32.06 36.30 49.91 52.85 20.26 31.90 44.93 49.18 20.57 26.35 39.65 50.76 28.84 34.03 42.95 46.37 17.86 21.63 31.51 37.89 7.80 6.68 40.23 47.39 7.80 6.68 40.23 47.39 7.80 2.82 39.70 48.23 33.64 38.33 49.91 52.85 8.22 17.32 31.51 37.89	LRC ROC BC117 BCRR month 0.15 0.16 1.20 0.29 JAN 0.13 0.12 0.29 0.21 JAN 0.11 0.09 0.24 0.17 APR 0.10 0.11 0.38 0.21 MAX 0.17 0.14 1.09 0.32 JUN 0.29 0.33 1.13 0.60 JUL 0.16 0.14 0.35 0.24 OCT 0.16 0.14 0.59 0.24 DCC 0.19 0.59 0.24 OCT 0.19 0.59 0.24 OCT 0.19 0.45 0.28 DEC 0.14 0.15 0.46 0.28 DEC 0.16 0.15 0.40 0.25 DEC 0.16 0.15 0.26 0.28 OII 0.10 0.06 0.35 0.11 oct 0.11 0.09
M54 M42 M35 M18 18.27 22.83 32.67 39.44 47.94 13.70 16.26 23.55 35.44 47.94 13.71 8.22 17.32 32.25 46.71 11.40 12.54 22.48 34.72 44.79 14.14 18.25 27.55 39.75 48.61 22.89 28.18 34.40 43.03 48.52 29.82 33.64 38.33 49.00 52.12 27.61 32.06 36.30 49.91 52.85 13.72 20.26 31.90 44.93 49.18 12.31 20.57 26.35 39.65 50.76 25.82 28.84 34.03 42.95 46.31 14.06 17.86 21.63 31.51 37.89 14.70 20.42 29.72 39.70 48.23 29.82 33.64 38.33 49.91 52.85 29.82 33.64 <td< th=""><th>PB LRC ROC BCII7 BCRR month 1.62 0.15 0.16 1.20 0.29 JAN 2.77 0.14 0.15 0.87 0.28 JAN 0.45 0.13 0.12 0.29 0.21 MAR 0.43 0.11 0.09 0.24 0.17 APR 4.90 0.10 0.11 0.38 0.21 MAY 8.81 0.17 0.14 1.09 0.32 JUL 13.91 0.29 0.31 0.60 JUL 4.99 0.16 0.14 0.35 0.20 JUL 8.03 0.29 0.21 0.07 JUL 1.95 0.11 0.59 0.24 OCT 1.95 0.11 0.59 0.24 OCT 1.139 0.15 0.16 0.45 0.28 DEC 4.21 0.16 0.15 0.05 0.24 DCT 4.15</th></td<>	PB LRC ROC BCII7 BCRR month 1.62 0.15 0.16 1.20 0.29 JAN 2.77 0.14 0.15 0.87 0.28 JAN 0.45 0.13 0.12 0.29 0.21 MAR 0.43 0.11 0.09 0.24 0.17 APR 4.90 0.10 0.11 0.38 0.21 MAY 8.81 0.17 0.14 1.09 0.32 JUL 13.91 0.29 0.31 0.60 JUL 4.99 0.16 0.14 0.35 0.20 JUL 8.03 0.29 0.21 0.07 JUL 1.95 0.11 0.59 0.24 OCT 1.95 0.11 0.59 0.24 OCT 1.139 0.15 0.16 0.45 0.28 DEC 4.21 0.16 0.15 0.05 0.24 DCT 4.15
M61 M54 M42 M35 M23 M18 14.42 18.27 22.83 32.67 39.44 47.94 10.39 13.70 16.26 23.53 35.64 47.94 0.72 2.91 8.22 17.32 32.25 46.71 7.16 11.40 12.54 22.48 34.72 44.79 5.69 14.14 18.25 27.55 39.75 48.61 19.87 22.89 28.18 34.40 43.03 48.52 20.76 29.82 33.64 38.33 49.00 52.12 21.75 27.61 32.06 36.30 49.91 52.85 7.79 13.72 20.26 31.90 44.93 49.18 5.59 12.31 20.57 26.35 39.65 50.76 22.37 23.84 34.03 42.95 46.37 13.40 17.25 21.63 28.86 40.23 47.39 13.5 14	NC403 PB LRC ROC BC117 BCRR month 0.31 1.62 0.15 0.16 1.20 0.29 JAN 0.53 2.77 0.14 0.15 0.89 0.28 JAN 0.18 0.45 0.11 0.15 0.29 0.21 MAR 0.27 0.43 0.11 0.09 0.24 0.17 APR 0.61 8.81 0.17 0.19 0.29 0.21 MAX 0.63 18.91 0.29 0.32 0.11 APR APR 0.65 4.99 0.10 0.11 0.09 0.24 0.17 APR 0.65 4.99 0.16 0.14 0.35 0.20 JUL 0.80 0.29 0.11 0.59 0.24 DC AUG 0.80 0.29 0.11 0.59 0.24 0.27 DC 0.81 1.29 0.11 0.45 0.28 DE
BRR M61 M54 M42 M35 M18 8.24 14.42 18.27 22.83 32.67 39.44 47.94 2.14 10.39 13.70 16.26 23.55 35.64 45.00 0.16 0.72 2.91 8.22 17.32 32.25 46.71 0.31 7.16 11.40 12.54 22.48 34.72 44.79 12.69 19.87 22.89 28.18 34.40 43.03 48.51 12.69 19.87 22.89 28.18 34.40 43.03 48.52 14.43 21.75 27.61 32.06 36.30 49.91 52.85 1.60 7.79 13.72 20.26 31.90 44.93 49.18 1.57 25.59 12.31 20.57 26.35 39.65 50.76 1.57 25.59 12.31 20.57 26.35 39.65 50.76 1.57 25.59 12.31 20.52 <td< th=""><th>GS NC403 PB LRC ROC BC117 BCRR month 0.22 0.31 1.62 0.15 0.16 1.20 0.29 JAN 0.23 0.33 1.62 0.15 0.16 0.29 0.29 JAN 0.12 0.32 2.77 0.14 0.15 0.89 0.24 DAR 0.12 0.29 0.10 0.11 0.09 0.24 0.17 APR 0.16 0.32 4.90 0.10 0.11 0.38 0.21 MAX 0.22 0.61 8.81 0.17 0.14 1.09 0.32 JUL 0.22 0.63 13.91 0.29 0.33 1.13 0.60 JUL 0.22 0.63 13.91 0.29 0.31 0.35 0.20 AUG 0.23 0.80 0.39 0.11 0.59 0.24 0.27 DCT 0.24 0.93 0.12 0.29</th></td<>	GS NC403 PB LRC ROC BC117 BCRR month 0.22 0.31 1.62 0.15 0.16 1.20 0.29 JAN 0.23 0.33 1.62 0.15 0.16 0.29 0.29 JAN 0.12 0.32 2.77 0.14 0.15 0.89 0.24 DAR 0.12 0.29 0.10 0.11 0.09 0.24 0.17 APR 0.16 0.32 4.90 0.10 0.11 0.38 0.21 MAX 0.22 0.61 8.81 0.17 0.14 1.09 0.32 JUL 0.22 0.63 13.91 0.29 0.33 1.13 0.60 JUL 0.22 0.63 13.91 0.29 0.31 0.35 0.20 AUG 0.23 0.80 0.39 0.11 0.59 0.24 0.27 DCT 0.24 0.93 0.12 0.29

Table 2.4 pH during 2008 at the Lower Cape Fear River Program stations.

HAN 7.3 7.3 7.5 7.6 7.7 7.8 8.1 8.1 8.0 HEB 6.9 6.7 7.0 6.9 6.8 6.8 6.9 6.7 7.0 6.9 6.7 7.0 6.9 6.7 7.0 6.9 6.7 7.0 6.9 6.8 6.9 7.0 <th>month</th> <th>NAV</th> <th>HIB</th> <th>BRR</th> <th>M61</th> <th>M54</th> <th>M42</th> <th>M35</th> <th>M23</th> <th>M18</th> <th>SPD</th> <th>month</th> <th>NC11</th> <th>AC</th> <th>DP</th> <th>\mathbf{BBT}</th> <th>IC</th> <th>NCF</th>	month	NAV	HIB	BRR	M61	M54	M42	M35	M23	M18	SPD	month	NC11	AC	DP	\mathbf{BBT}	IC	NCF
7.2 7.3 7.3 7.4 7.6 7.7 8.0 8.1 8.1 8.0 FEB 6.9 6.7 7.0 6.4 6.6 6.7 6.6 6.9 7.3 7.5 7.8 8.1 8.1 8.1 MAR 6.6 6.7 6.9 6.1 6.5 6.8 6.9 7.3 7.5 7.8 8.1 8.1 7.9 APR 6.6 7.2 6.9 6.1 6.5 6.1 6.5 6.1 6.5 6.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0	JAN	7.3	7.3	7.5	7.6	7.7	7.8	8.0	8.1	8.1	8.0	JAN		6.9	8.9	8.9	6.9	
6.7 6.6 6.9 6.9 7.3 7.8 8.1 8.1 8.1 8.1 8.1 9.1 APR 6.6 7.2 6.9 6.9 6.9 6.9 7.3 7.8 8.1 8.1 7.9 7.9 APR 6.6 6.7 6.9 6.9 6.3 6.3 6.3 6.9 7.8 APR 6.0 6.7 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.0 <th>FEB</th> <th>7.2</th> <th>7.3</th> <th>7.3</th> <th>7.4</th> <th>7.6</th> <th>7.7</th> <th>8.0</th> <th>8.1</th> <th>8.1</th> <th>8.0</th> <th>FEB</th> <th></th> <th>6.7</th> <th>7.0</th> <th>6.4</th> <th>9.9</th> <th></th>	FEB	7.2	7.3	7.3	7.4	7.6	7.7	8.0	8.1	8.1	8.0	FEB		6.7	7.0	6.4	9.9	
6.8 7.2 7.0 7.0 7.2 7.0 7.2 7.0 7.2 7.0 7.2 7.0 7.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.0 <th>MAR</th> <th>6.7</th> <th>9.9</th> <th>6.9</th> <th>6.9</th> <th>7.3</th> <th>7.5</th> <th>7.8</th> <th>8.1</th> <th>8.1</th> <th>8.1</th> <th>MAR</th> <th></th> <th>7.2</th> <th>6.9</th> <th>6.1</th> <th>6.5</th> <th></th>	MAR	6.7	9.9	6.9	6.9	7.3	7.5	7.8	8.1	8.1	8.1	MAR		7.2	6.9	6.1	6.5	
6.8 6.9 7.1 7.4 7.6 7.7 7.9 7.9 7.8 MAY 6.6 6.7 6.6 6.5 6.6 6.6 6.9 6.9 6.9 7.0 7.1 7.1 7.4 7.7 7.8 8.0 8.0 7.7 JUN 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.0 <th>APR</th> <th>8.9</th> <th>7.2</th> <th>7.0</th> <th>7.0</th> <th>7.2</th> <th>7.4</th> <th>7.7</th> <th>8.0</th> <th>8.1</th> <th>7.9</th> <th>APR</th> <th></th> <th>6.7</th> <th>8.9</th> <th>5.9</th> <th>6.3</th> <th></th>	APR	8.9	7.2	7.0	7.0	7.2	7.4	7.7	8.0	8.1	7.9	APR		6.7	8.9	5.9	6.3	
7.0 7.1 7.1 7.4 7.7 7.9 8.0 8.0 7.7 JUN 7.0 7.0 6.9 6.9 6.9 6.9 6.9 7.0 7.1 7.3 7.2 7.4 7.6 7.8 7.9 8.0 7.8 JUL 68 7.0 6.9 6.9 6.9 6.9 7.0 7.0 7.2 7.4 7.4 7.6 7.9 8.0 8.0 8.0 AUG 6.8 6.9 6.0 <th>MAY</th> <th>8.9</th> <th>6.9</th> <th>7.1</th> <th>7.1</th> <th>7.4</th> <th>7.6</th> <th>7.7</th> <th>7.9</th> <th>7.9</th> <th>7.8</th> <th>MAY</th> <th></th> <th>6.7</th> <th>9.9</th> <th>6.5</th> <th>9.9</th> <th></th>	MAY	8.9	6.9	7.1	7.1	7.4	7.6	7.7	7.9	7.9	7.8	MAY		6.7	9.9	6.5	9.9	
7.1 7.3 7.2 7.4 7.6 7.8 7.9 8.0 7.8 4UL 68 7.0 6.9 6.9 6.9 7.0 7.0 7.0 7.2 7.3 7.5 8.0	NOL	7.0	7.1	7.1	7.4	7.7	7.9	8.0	8.0	8.0	7.7	NOT		7.0	6.9	8.9	6.9	
7.0 7.0 7.2 7.3 7.5 8.0 9.0 <th>IOL</th> <th>7.1</th> <th>7.3</th> <th>7.2</th> <th>7.4</th> <th>7.6</th> <th>7.7</th> <th>7.8</th> <th>7.9</th> <th>8.0</th> <th>7.8</th> <th>Inf</th> <th></th> <th>7.0</th> <th>6.9</th> <th>6.9</th> <th>7.0</th> <th></th>	IOL	7.1	7.3	7.2	7.4	7.6	7.7	7.8	7.9	8.0	7.8	Inf		7.0	6.9	6.9	7.0	
7.2 7.4 7.1 7.3 8.1 8.0 8.0 8.0 SEP 6.7 6.6 6.7 6.6 6.7 6.6 6.6 6.7 6.6 6.7 6.6 6.7 6.6 6.7 6.6 6.7 6.6 6.7 6.7 6.7 6.7 6.7 6.4 6.2 6.4 6.2 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 6.4 6.7 <th>AUG</th> <th>7.0</th> <th>7.0</th> <th>7.2</th> <th>7.3</th> <th>7.5</th> <th>7.9</th> <th>8.0</th> <th>8.0</th> <th>8.0</th> <th>8.0</th> <th>AUG</th> <th></th> <th>6.9</th> <th>9.9</th> <th>9.9</th> <th>6.7</th> <th>•</th>	AUG	7.0	7.0	7.2	7.3	7.5	7.9	8.0	8.0	8.0	8.0	AUG		6.9	9.9	9.9	6.7	•
6.7 6.9 6.9 6.9 7.1 7.4 7.6 7.9 8.1 7.9 OCT 6.6 6.6 6.4 6.2 6.4 6.9 6.4 6.7 6.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 6.4 6.5 6.4 6.7 6.2 6.2 6.2 <th>SEP</th> <th>7.2</th> <th>7.4</th> <th>7.1</th> <th>7.1</th> <th>7.3</th> <th>7.7</th> <th>8.1</th> <th>8.0</th> <th>8.0</th> <th>8.0</th> <th>SEP</th> <th></th> <th>9.9</th> <th>6.7</th> <th>6.2</th> <th>9.9</th> <th></th>	SEP	7.2	7.4	7.1	7.1	7.3	7.7	8.1	8.0	8.0	8.0	SEP		9.9	6.7	6.2	9.9	
7.5 7.4 7.4 7.4 7.5 7.5 7.9 7.9 7.6 7.6 NOV 6.5 6.7 6.8 6.7 6.7 6.7 6.7 6.7 6.8 6.7 6.7 7.0 6.9 7.4 7.4 7.4 7.5 7.7 7.9	OCT	6.7	6.9	6.9	6.9	7.1	7.4	7.6	7.9	8.1	7.9	OCT		9.9	6.4	6.2	6.4	
7.0 6.9 7.4 7.4 7.5 7.7 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.0 <th>NOV</th> <th>7.5</th> <th>7.4</th> <th>7.4</th> <th>7.4</th> <th>7.5</th> <th>7.6</th> <th>7.7</th> <th>7.9</th> <th>7.9</th> <th>7.6</th> <th>NOV</th> <th></th> <th>6.7</th> <th>8.9</th> <th>9.9</th> <th>6.7</th> <th></th>	NOV	7.5	7.4	7.4	7.4	7.5	7.6	7.7	7.9	7.9	7.6	NOV		6.7	8.9	9.9	6.7	
7.0 7.2 7.2 7.4 7.2 7.3 7.8 8.0 8.0 7.9 median 6.7 6.7 6.8 6.5 6.6 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 <th>DEC</th> <th>7.0</th> <th>6.9</th> <th>7.4</th> <th>7.4</th> <th>7.4</th> <th>7.6</th> <th>7.7</th> <th>7.9</th> <th>7.9</th> <th>7.7</th> <th>DEC</th> <th></th> <th>6.5</th> <th>9.9</th> <th>6.5</th> <th>6.4</th> <th></th>	DEC	7.0	6.9	7.4	7.4	7.4	7.6	7.7	7.9	7.9	7.7	DEC		6.5	9.9	6.5	6.4	
0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.2 sid dev 7.0 7.2 7.2 7.4 7.5 7.4 7.5 7.7 7.8 8.0 8.0 7.9 8.1 </th <th>median</th> <th>7.0</th> <th>7.2</th> <th>7.2</th> <th>7.4</th> <th>7.2</th> <th>7.7</th> <th>7.8</th> <th>8.0</th> <th>8.0</th> <th>6.7</th> <th>median</th> <th></th> <th>6.7</th> <th>8.9</th> <th>6.5</th> <th>9.9</th> <th></th>	median	7.0	7.2	7.2	7.4	7.2	7.7	7.8	8.0	8.0	6.7	median		6.7	8.9	6.5	9.9	
7.0 7.2 7.2 7.4 7.5 7.7 7.8 8.0 8.0 7.9 median 6.7 6.7 6.7 6.7 6.7 6.8 6.5 7.5 7.4 7.5 7.6 7.9 8.1 <th>std dev</th> <th>0.2</th> <th>0.3</th> <th>0.2</th> <th>0.2</th> <th>0.2</th> <th>0.2</th> <th>0.2</th> <th>0.1</th> <th>0.1</th> <th>0.2</th> <th>std dev</th> <th></th> <th>0.2</th> <th>0.2</th> <th>0.3</th> <th>0.2</th> <th></th>	std dev	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	std dev		0.2	0.2	0.3	0.2	
7.5 7.4 7.5 7.6 7.7 7.9 8.1 8.1 8.1 8.1 max 7.0 7.2 7.0 6.9 7.0 6.5 6.9 6.9 7.1 7.4 7.6 7.9 7.6 min 6.5 6.5 6.4 5.9 6.3	median	7.0	7.2	7.2	7.4	7.5	7.7	7.8	8.0	8.0	7.9	median		6.7	6.7	8.9	6.5	
6.7 6.6 6.9 6.9 7.1 7.4 7.6 7.9 7.9 7.6 min 6.5 6.5 6.4 5.9 6.3	max	7.5	7.4	7.5	7.6	7.7	7.9	8.1	8.1	8.1	8.1	max	7.0	7.2	7.0	6.9	7.0	
	min	6.7	9.9	6.9	6.9	7.1	7.4	7.6	7.9	7.9	7.6	min	6.5	6.5	6.4	5.9	6.3	

month	4	SAR	CS	NC403	PB	LRC	ROC	BC117 1	3CRR	month		Γ CO		SR			month	NCF117	B210	COL	LVC2	ВС-СН
JAN		6.5	6.9	9.9	6.7	7.4	7.1		7.2	JAN	7.2		6.5	5.7	6.5	6.4	JAN 6.8	8.9		3.7		6.5
FEB		6.7	6.7	6.5	8.9	7.4	8.9		6.9	FEB				5.5			FEB	9.9		6.2		6.5
MAR		6.5	8.9	6.4	6.7	7.0	8.9		7.6	MAR				5.6			MAR	6.5		3.7		7.1
APR		6.4	6.5	6.3	6.5	9.9	6.3		6.5	APR				5.9			APR	6.2		4.1		9.9
MAY		5.8	8.9	6.5	7.1	7.0	6.9		7.0	MAY				0.9			MAY	6.5		4.0		6.7
NOC		7.1	6.7	6.5	7.4	8.1	7.1		7.0	NOL				0.9			NOL	9.9		4.1		7.0
\mathbf{n}		7.0	7.0	7.0	8.0	8.1	7.3		7.5	IOL				0.9			TOL	7.0				7.1
AUG		7.3	7.1	6.4	6.9	7.7	7.1		6.9	AUG				6.1			AUG	6.7		3.8		6.9
SEP		6.2	5.2	6.3	7.1	7.4	8.9		6.9	SEP				5.9			SEP	9.9		3.8		6.7
OCT		6.2	6.2	6.3	6.7	7.3	6.9		6.5	OCT				5.9			OCT	6.2		3.8		6.7
NOV		6.3	6.4	9.9	9.9	7.3	6.9		9.9	NOV				5.9			NOV	6.3		4.0		8.9
DEC		6.5	9.9	9.9	9.9	7.2	7.0		6.4	DEC				5.9			DEC	6.7		3.9		6.5
median		6.5	6.7	6.5	8.9	7.4	6.9		6.9	median				5.9			median	9.9		3.9		2.9
std dev		0.4	0.5	0.2	0.4	0.4	0.2		0.4	std dev				0.2			std dev	0.2		0.7		0.2
median	9.9	6.5	6.7	6.5	8.9	7.4	6.9	7.3	6.9	median		6.3		5.9			median	9.9	6.1	3.9	6.7	6.7
max		7.3	7.1	7.0	8.0	8.1	7.3		7.6	max				6.1			max	7.0		6.2		7.1
min		5.8	5.2	6.3	6.5	9.9	6.3		6.4	mim				5.5			min	6.2		3.7		6.5

Table 2.5 Dissolved Oxygen (mg/l) during 2008 at the Lower Cape Fear River Program stations.

month	NAV	HB	BRR	M61	M54	M42	M35	M23	M18	SPD			month	NC11	AC	DP	BBT	IC	NCF6	
JAN		9.4	9.4	9.2	9.4	9.5	9.5	9.5	6.3	9.4			JAN	10.7	10.1	6.6	10.0	6.6	9.1	
FEB		9.2	9.2	8.9	9.2	9.3	9.4	9.4	9.4	8.8			FEB	10.4	8.6	6.7	9.2	9.2	9.3	
MAR	8.6	8.5	8.4	8.4	8.8	8.9	9.0	9.0	8.8	9.0			MAR	10.8	10.3	10.2	9.4	8.6	9.3	
APR		7.1	7.4	7.0	7.0	7.4	7.5	7.4	7.5	7.6			APR	8.8	8.5	8.2	6.4	7.0	5.6	
MAY		6.1	6.4	6.3	6.5	6.9	6.9	6.9	7.0	6.7			MAY	7.2	6.7	5.7	5.5	5.9	0.9	
NO		5.4	5.5	6.2	7.4	7.8	7.1	8.9	6.1	5.1			NOI	8.8	8.9	5.1	5.1	5.4	8.9	
M	3.9	4.3	8.8	5.8	6.1	6.2	6.1	5.9	6.1	5.7			\mathbf{n}	8.9	5.1	3.5	3.5	3.8	5.6	
AUG		3.8	4.9	4.8	5.4	7.0	7.9	5.6	5.8	0.9			AUG	6.4	0.9	4.6	4.6	4.5	3.6	
SEP	4.8	5.0	0.9	4.9	5.1	7.2	8.9	9.9	6.5	8.9			SEP	6.7	6.4	6.1	4.3	5.7	4.1	
OCT		4.9	8.8	4.9	5.1	5.8	5.7	6.3	6.4	6.2			OCT	7.8	7.4	5.0	4.6	8.8	4.3	
NOV		7.0	7.0	6.9	7.3	7.6	7.6	7.8	7.9	7.1			NOV	9.5	9.1	9.1	7.7	8.4	7.3	
DEC	8.6	8.6	9.6	8.9	0.6	9.1	9.0	8.9	8.6	8.6			DEC	10.3	6.6	9.6	9.2	8.9	8.9	
mean		6.7	7.0	6.9	7.2	7.7	7.9	7.5	7.5	7.3			mean	8.7	8.0	7.2	9.9	6.9	6.7	
std dev		2.1	1.8	1.7	1.6	1.2	1.3	4.1	1.3	1.4		•	std dev	1.7	1.8	2.5	2.3	2.2	2.1	
median		9.9	6.7	9.9	7.2	7.5	7.8	7.2	7.3	7.0		-	nedian	8.8	8.8	8.0	7.2	0.9	6.5	
max		8.6	9.6	9.2	9.4	9.5	9.5	9.5	9.4	9.4			max	10.8	10.3	10.2	10.0	6.6	9.3	
min		3.8	8.4	8.8	5.1	5.8	5.7	5.6	5.8	5.1			min	6.4	5.1	3.5	3.5	3.8	3.6	
											į								•	
month	ANC	SAR	CS	NC403	PB	LRC	ROC	BC117	BCRR		month	6RC	Γ CO	$_{\rm GCO}$	\mathbf{SR}	BRN	HAM	I	month NCF117	(CF117 B
JAN	6.1	7.1	8.7	8.9	8.4	10.7	9.2	7.3	3.7		JAN	11.6	11.5	7.6	6.8	11.1	10.3		JAN	8.9
FEB	11.7	9.9	8.3	5.2	8.3	10.8	8.3	8.9	3.6		FEB	11.2	10.8	8.4	0.6	11.7	9.5		FEB	10.2
MAR	6.6	7.1	9.5	8.1	9.8	10.5	8.8	9.5	0.9		MAR	9.4	9.3	8.9	8.9	8.6	9.2		MAR	9.1
APR	6.4	6.4	9.9	5.9	6.7	8.6	6.5	8.0	7.5		APR	6.1	6.3	5.7	8.8	7.2	8.5		APR	5.8
MAY	5.6	9.5	5.6	2.6	9.5	7.7	8.9	6.7	2.5		MAY	7.2	7.2	4.9	2.4	8.0	5.8		MAY	5.1
											-								-	

month	ANC	SAR	CS	NC403	PB	LRC	ROC	BC117	BCRR	month	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM	month	NCF117	B210	col	LVC2 S	C-CH
JAN	6.1	7.1	8.7	8.9	8.4	10.7		7.3	3.7	JAN	11.6	11.5	7.6	6.8	11.1	10.3	JAN	6.8	10.1		7.5	9.4
FEB	11.7	9.9	8.3	5.2	8.3	10.8		8.9	3.6	FEB	11.2	10.8	8.4	0.6	11.7	9.5	FEB	10.2	9.4		8.0	9.5
MAR	6.6	7.1	9.5	8.1	8.6	10.5		9.5	0.9	MAR	9.4	9.3	8.9	8.9	8.6	9.2	MAR	9.1	8.5		6.6	8.7
APR	6.4	6.4	9.9	5.9	6.7	9.8		8.0	7.5	APR	6.1	6.3	5.7	8.8	7.2	8.5	APR	5.8	6.7		4.3	7.5
MAY	5.6	9.5	5.6	5.6	9.5	7.7		6.7	2.5	MAY	7.2	7.2	4.9	2.4	8.0	5.8	MAY	5.1	5.6		3.1	6.1
NO	3.4	5.3	3.7	4.3	6.5	9.3		5.8	6.0	NO	7.4	6.9	5.6	0.2	8.1	3.9	NO	4.2	4.4		1.8	4.6
IOL	4.0	5.2	1.2	5.1	7.7	9.5		3.3	1.4	JOL	6.3	0.9	5.2	1.9	8.5	2.9	JUL	5.3	5.0		1.5	5.7
AUG	3.0	5.1	0.9	1.5	5.3	0.6		6.4	4.6	AUG	5.8	5.7	1.8	1:1	6.3	3.4	AUG	4.7	4.3		1.9	3.9
SEP	3.6	6.4	5.8	2.1	7.3	7.6		6.5	0.5	SEP	3.5	3.9	3.0	9.0	5.6	6.3	SEP	3.7	3.5		2.6	3.8
OCT	4.4	3.6	2.9	1.8	6.5	8.4		7.3	2.0	OCT	7.7	7.0	4.3	1.5	8.7	7.6	OCT	4.0	5.7		5.2	4.9
NOV	7.5	8.8	8.2	6.7	9.2	11.3		9.6	8.6	NOV	6.7	6.7	7.7	3.1	6.6	7.4	NOV	6.9	8.9		8.3	7.9
DEC	8.9	9.6	10.1	8.4	10.2	12.0		10.3	8.2	DEC	10.1	9.5	7.9	7.2	9.5	0.6	DEC	9.1	9.6		8.5	0.6
mean	6.2	6.7	6.4	4.9	6.7	9.6	7.8	7.3 4.1	4.1	mean	8.0	7.8	5.9	4.0	8.7	7.0	mean	6.4	8.9	6.7	5.2	8.9
std dev		1.8	2.8	2.4	1.4	1.4		1.9	2.9	std dev	2.4	2.3	2.3	3.2	1.8	2.5	std dev	2.3	2.4		3.1	2.2
median		6.5	6.3	5.2	8.0	9.4		7.1	3.7	median	7.6	7.1	5.7	2.8	9.8	7.5	median	5.6	6.2		8.4	8.9
max	11.7	9.6	10.1	8.4	10.2	12.0		10.3	8.6	max	11.6	11.5	7.6	0.6	11.7	10.3	max	10.2	10.1		6.6	9.5
min	3.0	3.6	1.2	1.5	5.3	7.6		3.3	0.5	min	3.5	3.9	1.8	0.2	5.6	2.9	min 3.7	3.7	3.5		1.5	3.8

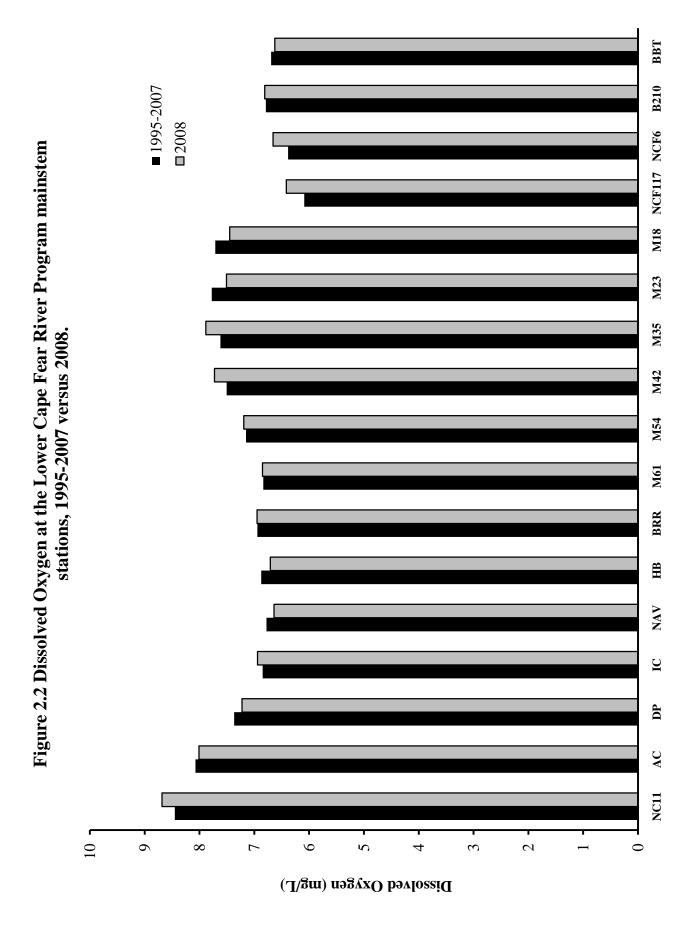


Table 2.6 Field Turbidity (NTU) during 2008 at the Lower Cape Fear River Program stations.

BBT IC NCF6	16 16 10	4 7 35	3 7 10	4 12 111	8 7 5	8 6 6	13 18 7	8 7 15		7 7 14	6 10 30	39		6	13 8 10	62 39 35	
DP B	16 1	13	12	18	11	10	14	8	19	7	6	87 (22	16 1	87 (
AC	56	12	12	17	13	17	15	6	42	6	17	110	25	28	12	110	
th NC11	N 31	3 12	10	R 20	Y 14	7			33					ev 38	an 12	x 143	
month	JAN	FE	MA	AP	MAY	jor	DI.	AU	SEI	OC	NO	DE	mea	std dev	median	max	
SPD	7		10	5	8	7	5	4	3	5	9	8	9	2	9	10	
M18	2		12	5	9	33	1	3	3	33	10	111	9	4	5	12	
M23	4		6	S	S	33	33	3	3	33	∞	6	S	2	4	6	
M35	3		6	ж	4	5	5	S	4	3	∞	7	S	2	5	6	
M42	4		21	9	5	7	9	7	9	33	7	9	7	S	9	21	
1 M54	22		43	9	5	6	∞	9	7	9	∞		12		8	43	
3 M61	7		62	7	9	9	8	7	8	5	8	6	12	17	7	62	
BRR	16		75	7	11	6	11	6	14	7	9	11	16	20	11	75	
V HB	JAN 33 15		62	9	13	10	12	∞	16	9	7	14	15	16	12	62	
h NAV	33		3 76	∞	7 10	37	16	13	13	7	7 48	, 16	1 25	v 22	m 16	2/	

nth	ANC	SAR	CS	NC403	PB	LRC	ROC	BC117	BCRR	month	6RC	Γ CO	009	\mathbf{SR}	BRN	HAM		NCF117	B210	COL	LVC2	SC-CH
N	0	0	0	1	9	3	9	10	36	JAN	7	5	5	4	2	4	JAN	5	2	1	3	33
EB	5	2	2	-	9	2	3	11	13	FEB	5	4	-	1	3	5	FEB	5	-	0	2	11
AR	2	5	2	11	50	9	12	16	16	MAR	4	2	-	0	3	3	MAR	-	0	0	0	6
PR	5	33	7	2	9	17	4	6	13	APR	18	4	3	2	18	13	APR	%	S	0	_	21
AY	4	4	5	_	Ξ	S	15	10	12	MAY	S	4	3	2	9	4	MAY	3	2	0	4	25
Z	4	-	20	14	12	5	9	7	5	NOL	2	-	3	22	7	9	NOL	5	3	2	6	16
ď	-	-	12	11	13	-	3	2	7	IOL	3	2	5	31	4	9	JUL	9	6		S	32
UG	-	2	20	4	12	7	10	12	14	AUG	3	13	40	4	16	∞	AUG	3	3	2	S	19
EP	0	-	0	2	12	0	3	9	13	SEP	-	0	-	3	6	18	SEP	41	3	3	3	32
CT	2	-	0	2	5	2	5	5	9	OCT	5	2	-	2	3	3	OCT	-	-	0	1	4
00	3	3	2	2	∞	6	5	7	6	NOV	4	2	1	0	∞	4	NOV	2	-	0	1	∞
EC	3	3	2	_	9	4	5	Π	10	DEC	11	3	-	0	6	111	DEC	3	2	2	11	79
ean	3	2	9	4	12	w	9	6	13	mean	9	4	ß	9	œ	7	mean	ß	3	1	4	24
dev	2	-	7	5	12	5	4	4	~	std dev	S	3	11	10	S	5	std dev	4	2	1	3	20
dian	3	7	7	2	10	5	5	10	13	median	5	\mathcal{E}	2	2	9	9	median	4	2	0	33	20
ıax	5	5	20	14	50	17	15	16	36	max	18	13	40	31	18	18	max	41	6	\mathcal{C}	11	79
nin	0	0	0	-	S	0	8	2	S	min	1	0	-	0	3	3	min	1	0	0	0	4

■ 1995-2007 B210 □ 2008 M18 NCF117 NCF6 Figure 2.3 Field Turbidity at the Lower Cape Fear River Program mainstem M23 M35 stations, 1995-2007 versus 2008. M42 M54 M61 BRR HB NAV \mathbf{IC} DP AC NC11 30 J 20 25 15 10 2 0 Field Turbidity (NTU)

Table 2.7 Total Suspended Solids (mg/L) during 2008 at the Lower Cape Fear River Program stations.

F6	L		٠.				22	٠.			_		ا	٠.			
NCF	11	41	16	13	9	9	18	22	26	∞	40	24	19	12	7	4	9
IC	11	4	7	13	5	5	20	5	7	4	10	14	6	5	10	20	4
DP	6	10	10	16	-	9	11	7	10	5	8	47	12	12	6	47	-
AC	6	6	6	15	4	7	11	9	24	5	15	77	16	20	10	77	4
NC11	10	10	6	17	7	5	8	9	29	6	12	96	18	25	10	96	2
nonth	JAN	FEB	MAR	APR	MAY	NOL	JUL	AUG	SEP	OCT	NOV	DEC	mean	std dev	nedian	max	min
ш			I					•		-	. ,		-	S	II		
SPD	20	24	17	8	24	6	10	16	10	8	20	14	15	9	15	24	∞
M18	8	29	22	10	16	7	5	17	10	∞	56	15	14	8	13	29	2
M23	9	16	18	6	7	10	7	8	6	20	24	12	12	9	10	24	9
M35	4	13	13	5	6	7	6	6	18	7	18	11	10	5	6	18	4
M42	9	15	20	7	6	21	6	6	11	9	17	10	12	5	10	21	9
M54	10	15	30	6	10	17	16	6	6	∞	15	∞	13	9	10	30	∞
M61	8	13	35	7	6	17	10	6	6	9	16	6	12	∞	6	35	9
BRR	15	19	29	5	11	14	10	4	12	9	16	∞	12	7	12	29	4
HB	18	14	34	7	6	15	11	8	∞	8	11	6	13	%	10	34	7
NAV	23	18	31	9	12	42	12	18	10	6	8	10	17	11	12	42	9
nonth	JAN	FEB	IAR	PR	MAY	S	TI.	nG	EP	CT	OV	EC	mean	td dev	nedian	max	min —
Ш	ľ	Ξ.	Σ	V	Σ	r	ſ	A	S	0	Z	Ω	Ξ	std	me	n	=

month	ANC	SAR	CS	NC403	PB	LRC	ROC	BC117	BCRR	month	6RC	rc0	GCO	\mathbf{SR}	BRN	HAM	month	NCF117	B210	COL	LVC2
JAN	3	3	3	2	5	3	8	9	27	JAN	3	3	1	2	2	3	JAN	5	2	1	1
FEB	5	3	5	_	9	2	2	8	10	FEB	4	3	2	_	-	5	FEB	9	1	-	-
MAR	2	9	ж	5	16	9	18	14	11	MAR	5	33	1	5	2	2	MAR	3	_	_	_
APR	4	4	4	2	5	25	S	7	7	APR	7		1	3	25	11	APR	7	8	-	5
MAY	4	9	∞	5	5	10	18	16	12	MAY	4		5	4	5	3	MAY	4	3	_	5
NOL	27	-	21	14	16	14	8	10	15	NOI	_		40	18	з	4	JUN	9	3		14
JOL	1	11	6	8	5	-	4	5	10	JOL	1		33	16	2	9	M		_		33
AUG	1	-	24	4	∞	4	10	6	5	AUG	33		12	9	20	4	AUG	33			3
SEP	2	4	33	5	46	8	5	10	15	SEP	7		33	7	14	18	SEP	9			2
OCT	ю	3	1	5	4	1	∞	5	7	OCT	4			3	5	1	OCT	3	4	-	2
NOV	2	_	1	-	∞	5	3	3	3	NOV	2	-	3	2	7	1	NOV	4			1
DEC	2	1	1	_	1	4	1	4	4	DEC	8	33	1	1	11	5	DEC	3			5
mean	S	4	7	4	10	7	œ	8	11	mean	4	3	9	9	8	s.	mean	S			4
std dev	7	3	∞	4	12	7	9	4	7	std dev	7	3	11	9	8	5	std dev	1	2	4	4
median	3	3	4	5	9	4	7	8	10	median	4	3	33	4	5	4	median	5	3	1	3
max	27	11	24	14	46	25	18	16	27	max	∞	13	40	18	25	18	max	7	∞	15	14
min	-	-	1	-	_	-	-	3	3	mim	1	-	_	-	-	1	min	3	-	-	1

Table 2.8 Light Attenuation during 2008 at the Lower Cape Fear River Program stations.

month			BRR	M61	M54	M42	M35	M23	M18	SPD	month	NC11	\mathbf{AC}	DP	\mathbf{BBT}	\mathbf{IC}	NCF6
JAN			2.12	2.41	1.92	1.85	1.57	96.0	0.94	1.23	JAN		3.66	3.39	3.16	3.12	2.35
FEB			2.53	3.79	2.52			1.96	2.77	1.47	FEB		2.21	3.24	2.11	1.96	5.78
MAR	5.60	5.30	5.49	5.76	4.47	3.27	2.66	1.53	1.35	1.61	MAR	2.38	3.53	3.17	2.42	2.86	4.12
APR			2.83	3.16	2.47	2.24	2.02	1.71	1.26	1.71	APR		2.86	2.95	3.54	3.88	4.70
MAY			2.79	2.29	2.00	2.00	1.48	1.17	0.93	1.51	MAY		3.24	3.53	2.99	3.07	3.10
JUN			2.25	2.66	2.32	1.97	1.89	1.09	0.89	1.41	NOI		2.85	2.65	2.66	2.98	2.81
IOL			2.31	3.34	2.05	1.86	1.50	0.95	0.74	1.29	TOL		3.69	3.11	2.85	4.47	2.36
AUG			2.18	3.08	2.18	2.05	1.78	0.92	0.82	1.05	AUG		1.78	2.97	2.31	3.10	2.47
SEP			2.44	3.03	2.07	2.48	1.91	1.01	1.07	1.12	SEP		4.16	3.16	4.12	2.88	3.44
OCT			3.33	3.68	3.10	2.56	2.27	1.34	0.82	1.49	OCT		2.53	3.62	3.80	3.64	5.02
NOV			2.79	2.91	2.44	2.28	2.14	1.71	1.68	1.46	NOV		3.32	2.80	3.38	3.15	6.67
DEC			2.35	2.87	2.13			1.79	1.70	1.40	DEC		6.49	7.91	4.97	3.63	4.02
mean			2.78	3.25	2.47	2.26	1.92	1.35	1.25	1.40	mean		3.36	3.54	3.19	3.23	3.90
std dev			0.92	0.91	0.71	0.43	0.37	0.38	0.58	0.19	std dev		1.19	1.40	0.83	0.62	1.41
median			2.49	3.06	2.25	2.15	1.90	1.26	1.01	1.44	median		2.62	3.28	3.17	3.08	3.11
max			5.49	5.76	4.47	3.27	2.66	1.96	2.77	1.71	max		6.49	7.91	4.97	4.47	6.67
mim			2.12	2.29	1.92	1.85	1.48	0.92	0.74	1.05	min		1.78	2.65	2 11	1 96	235

Table 2.9 Total Nitrogen (μg/l) during 2008 at the Lower Cape Fear River Program stations.

																		100	520	630	006	1,200	096	1,040		830	1,240	1,040	009	009	698	241	006	1,240	520
																		B210	710	092	1,020	950	1,150	890	029	096	1,020	1,210	0/9	620	988	190	920	1,210	620
																		NCE117	850	1.250	710	1,050	1,150	1,030	096	099	750	1,200	1,100	770	126	195	966	1,250	099
																		_	_	FEB	MAR	APR	MAY	NOL	IOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min
NCF6	830	1,300	1,480	1,440	200	810	830	950	096	550	1,090	1,040	866	276	955	1,480	550													Į.					
$_{\rm IC}$	1,240	1,310	1,210	1,400	700	1,230	2,350	1,550	970	2,130	1,610	1,180	1,407	440	1,275	2,350	700	HAM	550	740	750	1,720	580	440	230	850	1,270	510	300	1,330	773	433	099	1,720	230
DP	1,360	1,680	1,640	1,170	006	1,350	2,560	1,390	1,390	1,350	1,530	1,910	1,519	398	1,390	2,560	006	RDN	470	540	850	1,250	710	770	720	1,180	850	550	089	910	190	229	745	1,250	470
\mathbf{AC}	2,060	1,620	2,390	1,040	1,450	1,800	2,110	1,580	1,090	086	1,490	1,550	1,597	421	1,565	2,390	086	9	540	1.030	096	1,900	970	1,840	1,130	1,130	1,260	099	460	800	1,057	432	1,000	1,900	460
NC11	1,380	1,760	2,470	1,200	1,090	1,330	2,050	1,320	1,410	1,340	1,400	1,700	1,538	378	1,470	2,470	1,090	OJ	086	1.240	1,030	1,660	940	1,640	1,180	2,640	1,030	530	930	720	1,210	533	1,030	2,640	530
month	JAN	FEB	MAR	APR	MAY	NO	lur	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min	051	1.150	1,010	1,730	910	1,230	910	870	1,930	1,170	1,060	940	1,230	1,178	318	1,105	1,930	870
												ļ						Jay	1.070	950	1,330	2,820	1,700	940	380	1,050	1,190	1,590	1,560	1,890	1,373	287	1,260	2,820	380
																		month	IAN	FEB	MAR	APR	MAY	NOI	nr	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min
SPD	260	470	620	350	70	009	200	700	260	350	430	290	383	179	350	700	70		1											!					
M18	120	200	270	200	20	150	200	300	200	1,920	580	260	371	483	200	1,920	50	RCPP	1.180	066	1,020	1,240	1,830	2,010	1,510	290	1,200	089	006	790	1,162	419	1,100	2,010	290
M23	450	720	200	360	110	160	200	200	260	360	740	540	383	202	360	740	110	BC117	25.300	17,800	5,010	3,300	6,740	27,300	24,000	4,920	12,300	9,470	8,100	6,440	12,557	8,366	8,785	27,300	3.300
M35	059	550	1,130	730	720	390	480	200	1,210	570	360	640	829	249	645	1,210	360	JUa	1.140	930	1,430	1,870	1,920	1,730	2,350	2,420	1,740	026	1,660	1,360	1,627	464	1,695	2,420	930
M42	740	1,220	1,340	099	830	530	6,720	780	006	029	750	089	1,318	1,644	765	6,720	530	Jai	550	450	950	2,050	006	099	400	720	009	1,010	1,200	830	098	425	775	2,050	400
M54	029	1,260	1,430	006	970	870	910	1,130	1,050	910	880	086	266	191	940	1,430	029	E	1.930	1,420	2,940	2,220	1,000	1,190	1,300	1,140	3,580	069	3,360	2,380	1,929	726	1,675	3,580	069
M61	1,130	1,070	1,550	750	1,190	1,000	1,200	1,170	950	1,100	1,140	880	1,094	190	1,115	1,550	750	NC403	1.430	1,160	2,170	1,700	1,190	1,500	1,070	940	1,100	1,080	2,230	1,640	1,434	412	1,310	2,230	940
BRR	1,210	1,370	1,820	1,610	1,140	006	1,270	1,090	086	1,090	910	096	1,196	273	1,115	1,820	006	50	100	850	130	1,240	1,190	1,730	1,930	2,330	1,600	1,020	200	500	1,093	683	1,105	2,330	100
HB	098	1,130	1,850	1,550	1,320	1,200	1,550	1,290	930	1,060	790	068	1,202	312	1,165	1,850	790	GAB	570	096	1,250	1,280	1,340	2,960	890	3,450	1,590	1,050	630	092	1,394	865	1,150	3,450	570
NAV	1,210	1,370	2,180	1,280	1,190	1,200	1,580	1,240	1,040	890	1,670	850	1,308	350	1,225	2,180	850	SN V	400	2.260	9,730	2,260	1,560	1,290	830	970	800	1,440	1,770	1,640	2,079	2,371	1,500	9,730	400
month	JAN	В	4	~	X	z	ı	ي	Ъ	L	NOV	C	an	lev	ian	×	u	— —	z	m	2	~	Y.	z	ī	JG.	J.	T	>	C	an	lev	median	×	<u>۔</u> ع.

LVC2
1,150
1,180
1,390
900
1,200
1,200
1,200
1,220
1,220
1,220
1,220
1,220
1,220
4,180
4,180
760
4,180

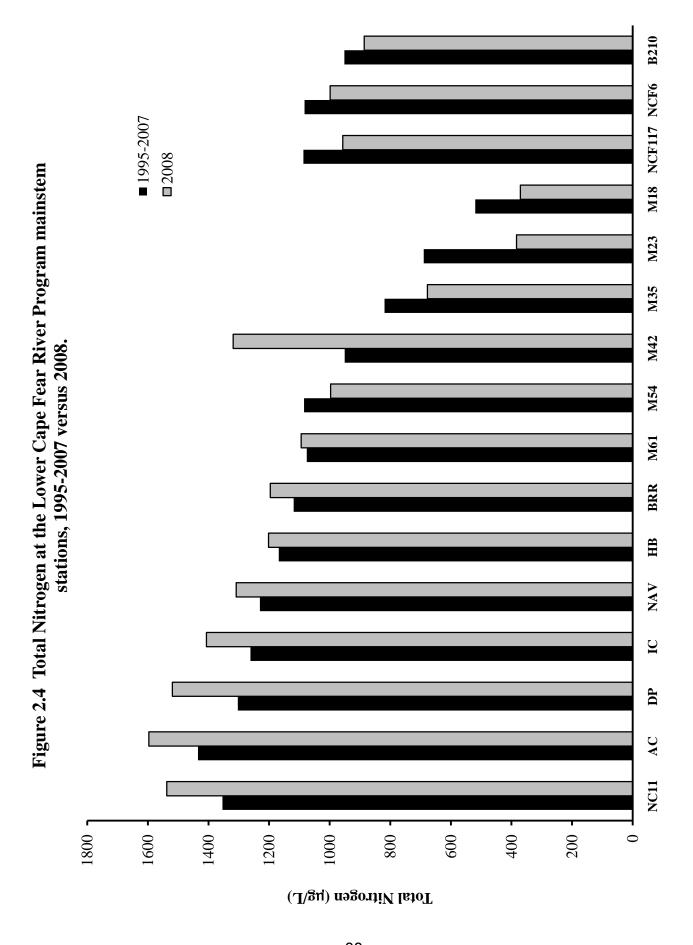


Table 2.10 Nitrate/Nitrite (µg/l) during 2008 at the Lower Cape Fear River stations.

																		B210	310	260	320	250	450	200	70	160	120	110	170	220	220	102	210	450	70
																		NCF117	350	350	510	350	350	240	260	160	150	200	200	270	283	66	265	510	150
																			JAN	FEB	MAR	APR	MAY	NOI	JOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	mim
NCF6	430	400	480	240	10	340	430	350	460	150	06	240	302	148	345	480	10		•											ı					
IC	640	710	510	300	100	520	1,150	650	470	1,730	810	480	673	404	345	1,730	100	HAM	50	40	150	220	110	40	30	150	370	110	10	330	134	113	110	370	10
DP	092	086	740	470	100	260	096	490	069	450	930	610	645	244	580	086	100	BRN	170	40	250	150	290	370	420	80	20	150	180	310	205	118	175	420	40
AC	1,060	1,020	790	440	059	810	810	880	590	089	790	650	764	168	920	1,060	440	SR	40	30	09	10	20	40	30	30	09	09	160	300	73	77	45	300	10
NC11	880	1,060	770	200	390	750	850	820	610	640	006	700	739	177	715	1,060	390	009	180	340	130	09	100	340	180	40	30	30	330	320	173	123	155	340	30
month	JAN	FEB	MAR	APR	MAY	NOL	JOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min	TCO	450	410	930	210	400	210	70	130	70	160	440	730	351	256	305	930	70
	ļ											ı						6RC	870	550	1,030	720	910	340	80	350	190	280	096	1,190	648	340	655	1,190	08
																		month	JAN	FEB	MAR	APR	MAY	NOI	JOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	mi m
SPD	160	70	120	50	70	10	10	10	09	50	30	06	61	44	55	160	10		I											ı					
M18	120	100	70	10	10	10	10	10	10	1720	80	160	193	463	40	1,720	10	BCRR	380	190	220	140	730	06	110	190	10	80	200	390	253	200	190	730	10
M23	250	220	10	09	110	10	10	10	09	09	140	240	86	68	09	250	10	BC117	24,900	16,900	4,010	2,100	5,340	27,300	24,000	3,420	11,200	9,270	7,700	5,840	11,832	8,720	8,485	27,300	2,100
M35	350	350	230	130	270	09	80	100	210	170	360	340	221	108	220	360	09	ROC	340	530	430	370	820	730	1,350	1,020	440	170	098	099	643	319	595	1,350	170
M42	440	420	340	160	340	180	520	180	400	170	550	380	340	132	360	550	160	LRC	50	50	150	450	10	10	10	120	10	110	200	130	108	120	80	450	10
M54	470	460	430	200	420	280	310	330	550	210	580	380	385	118	400	280	200	<u>88</u>	1,530	420	1,740	1,220	10	10	10	40	086	06	2,460	1,780	828	837	700	2,460	10
M61	530	470	450	250	470	330	200	470	550	300	640	380	445	107	470	640	250	NC403	730	460	1,070	700	290	10	70	40	10	80	1,530	1,240	519	510	375	1,530	10
BRR	510	570	520	410	550	360	770	290	480	390	710	460	527	118	515	770	360	જ	10	50	30	140	190	10	30	30	10	20	10	10	45	99	25	190	10
Æ	460	630	450	350	550	390	850	290	530	360	790	490	537	152	510	850	350	SAR	70	160	250	180	240	1,520	06	1,550	390	50	30	260	399	518	210	1,550	30
	0	0,	30	80	20	90	08	40	40	06	170	150	260	150	515	880	380	ANC	10	160	530	460	09	30	30	70	10	40	270	440	176	188	65	530	10
NAV	61	67	4	æ	Š	4	œ	9	4	m	(-	7																							
_	-														median			th di	Z	3B	4R	Z.	4Y	Z	H	.	3P	CI	λ	$\mathfrak{Z}_{\mathbf{C}}$			median	ах	Ę.

 COL
 LVC2

 20
 450

 30
 290

 10
 290

 10
 10

 360
 10

 30
 880

 40
 220

 40
 220

 10
 230

 54
 396

 98
 366

 30
 1,100

 10
 230

 88
 366

 30
 1,100

 10
 10

 10
 10

 10
 10

Table 2.11 Ammonium (µg/l) during 2008 at the Lower Cape Fear River stations.

]									50 50							180 230		ANC SAR GS	10	20	10 5	50	130	200	70	80		40	20	90 5	09	28	45	200	1
_1.									30									NC403			10									10					
M54	140	100	130	80	06	190	40	30	30	100	190	100	102	54	100	190	30	BB	80	130	380	120	20	40	20	40	650	120	110	70	148	185	95	650	,
M42	120	110	09	70	50	50	40	20	5	50	120	110	<i>L</i> 9	39	55	120	5	L'RC		10	10	170	50	80	20	190	40	70	20	80	63	09	45	190	,
M35	20	80	40	09	80	20	10	5	5	09	120	100	53	38	55	120	S	ROC		40	30	70	70	06	40	09	40	40	30	30	73	98	40	340	,
MZ3	30	10	40	30	20	30	5	5	5	10	20	70	23	19	20	70	5	BC117		40	180	06	110	180	40	80	70	20	40	09	83	50	65	180)
M18	S	2	5	5	5	5	5	5	5	5	5	10	5	1	2	10	5	BCRR	09	30	40	110	120	710	260	70	290	80	30	5	150	198	75	710)
SPD	10	5	30	20	20	50	5	10	5	10		30	18	14	10	20	5	Ĕ	F	ĭ	Σ	¥	Σ	ſ	ſ	A	S	0	Z	Q	a	std	me	п	
																		month 6												DEC					
om	\mathbf{J}_{A}	FI	\mathbf{M}_{r}	AI	W	ц	JL	AL	SEP	ŏ	ž	DE	me	std	mec	H	min	ORC LC												60 30					
month NCL															_			000												0 30					
									70 10									S 005																	
									100 10									SR												20 1					
									100 4																					10 5					
									40 30									HAM		16	0	0	0	0/	0	0	0	0	16	510	4	17	0	01	2
ا ۽	0	_	•	_	_	_	•	•	•	_	_	•	<u>_</u>	6	_	0	_	mont	JAN	FEB	MAR	APR	MAY	NOT	JOL	AUG	SEP	OCT	NOV	DEC	mean	std de	median	max	
																		nonth NCF117	30											20					,
																			10											ļ					

LVC2 1,070 1,810 1,300 1,810

Table 2.12 Total Kjeldahl Nitrogen (μg/l) during 2008 at the Lower Cape Fear River Program stations.

				1011	+CIAI	741	CCIA	C71V	1110	SFD	плиош		A	ΩĽ	1	NCFO
)	00	400	700	009	200	300	300	200	50	100	JAN	200		009	009	400
	00/	500	800	009	800	800	200	500	100	400	FEB			700	009	006
	,700	1,400	1,300	1,100	1,000	1,000	006	200	200	500	MAR		1,600	006	700	1,000
	006	1,200	1,200	200	700	500	009	300	200	300	APR		009	700	1,100	1,200
	940	770	280	720	550	490	450	50	50	50	MAY		800	800	009	700
	740	810	540	029	590	350	330	160	150	009	NOI		066	790	710	470
	200	700	500	700	009	6,200	400	200	200	200	IOL		1,300	1,600	1,200	400
	009	700	200	200	800	009	009	200	300	700	AUG		700	006	006	009
	009	400	200	400	500	500	1,000	200	200	200	SEP		500	700	200	200
	200	700	700	800	700	500	400	300	200	300	OCT		300	006	400	400
	006	50	200	500	300	200	20	009	200	400	NOV		700	009	800	1,000
	400	400	500	500	009	300	300	300	100	200	DEC		006	1,300	700	800
	748	699	699	649	612	826	461	293	188	329	mean		833	874	734	734
	318	351	297	176	208	1,589	264	156	117	190	std dev		342	283	225	225
	029	700	595	635	009	500	400	250	200	300	median		700	650	200	920
	1,700	1,400	1,300	1,100	1,000	6,200	1,000	009	200	700	max	1,700	1,600	1,600	1,200	1,200
	400	50	200	400	200	200	20	50	50	50	min		300	009	400	400

500 100 700 400 500 800 1AN 200 700 800 500 300 500 800 800 700 1,000 1,000 400 800 BAR 300 800 900 500 500 700 1,100 1,100 1,200 1,000 1,000 1,000 1,100 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,00 1,000	7	ANC	SAR	CS	GS NC403	PB	LRC	ROC	BC117 I	BCRR	month	$\overline{}$	Γ CO	GCO	\mathbf{SR}	BRN	HAM	month	nonth NCF117	B210	COL	LVC2
800 700 1,000 400 900 800 FEB 400 600 1,000 500 FEB 900 500 1,000 500 400 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 1,100 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,100 1,200 1,100 1,200 1,100 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100 1,200 1,100	400 500	500		100	700		200	800		800	JAN				200	300	500	JAN	005		200	200
100 1,100 1,200 800 1,100 1,000 1,100 1,100 1,000 1,1		800		800	700	1,000	400	400		800	FEB			006	1,000	500	700	FEB		500	009	1,600
1,100 1,000 1,000 1,500 1,500 1,000 <th< th=""><th></th><th>1,0</th><th>00</th><th>100</th><th>1,100</th><th>1,200</th><th>800</th><th>1,000</th><th></th><th>800</th><th>MAR</th><th></th><th></th><th>006</th><th>006</th><th>009</th><th>009</th><th>MAR</th><th></th><th>200</th><th>006</th><th>1,100</th></th<>		1,0	00	100	1,100	1,200	800	1,000		800	MAR			006	006	009	009	MAR		200	006	1,100
1,000 900 1,000 900 1,100 1,000 900 1,100 1,000 900 1,100 1,000 900 1,100 1,000 1,000 1,100 1,000 1,000 1,100 1,000 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 1,000 1,100 <th></th> <th>Ξ,</th> <th></th> <th>1,100</th> <th>1,000</th> <th>1,000</th> <th>1,600</th> <th>1,500</th> <th></th> <th>1,100</th> <th>APR</th> <th></th> <th></th> <th>1,600</th> <th>1,900</th> <th>1,100</th> <th>1,500</th> <th>APR</th> <th></th> <th>700</th> <th>1,200</th> <th>006</th>		Ξ,		1,100	1,000	1,000	1,600	1,500		1,100	APR			1,600	1,900	1,100	1,500	APR		700	1,200	006
1,730 1,500 1,100 660 1,900 400 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,1		Ţ		1,000	006	1,000	006	1,100		1,100	MAY			840	920	420	470	MAY		700	009	1,200
1,900 1,300 1,300 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,100 200 1,100 200 1,100 200 1,100 200 1,100 200 1,100 200 1,100 200 1,100 200 1,100 200 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 200		4,		1,730	1,500	1,190	099	1,000		1,920	NOI			1,300	1,800	400	400	JUN		069	1,010	086
2,300 900 1,100 600 1,400 1,500 400 1,500 1,800 1,800 1,100 1,100 400 1,200 2,600 1,100 1,100 1,000 1,100 </th <th></th> <th>×</th> <th></th> <th>1,900</th> <th>1,000</th> <th>1,300</th> <th>400</th> <th>1,000</th> <th></th> <th>1,400</th> <th>nr</th> <th></th> <th></th> <th>1,000</th> <th>1,100</th> <th>300</th> <th>200</th> <th>JUL</th> <th></th> <th>009</th> <th></th> <th>3,200</th>		×		1,900	1,000	1,300	400	1,000		1,400	nr			1,000	1,100	300	200	JUL		009		3,200
1,600 1,100 5,600 600 1,300 1,100 1,200 1,000 1,100 1,000 200 200 200 1,000 </th <th></th> <td>5,</td> <td></td> <td>2,300</td> <td>006</td> <td>1,100</td> <td>009</td> <td>1,400</td> <td></td> <td>400</td> <th>AUG</th> <th></th> <td></td> <td>2,600</td> <td>1,100</td> <td>1,100</td> <td>700</td> <th>AUG</th> <td></td> <td>800</td> <td>800</td> <td>1,400</td>		5,		2,300	006	1,100	009	1,400		400	AUG			2,600	1,100	1,100	700	AUG		800	800	1,400
1,000 600 900 800 400 800 800 800 900 900 800 800 900 900 900 800 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 800 400 400 800 400 800 400 800 400 800 800 400 800 400 800 </th <th></th> <th>7,</th> <th></th> <th>1,600</th> <th>1,100</th> <th>2,600</th> <th>009</th> <th>1,300</th> <th></th> <th>1,200</th> <th>SEP</th> <th></th> <th></th> <th>1,000</th> <th>1,200</th> <th>800</th> <th>006</th> <th>SEP</th> <th></th> <th>006</th> <th>1,200</th> <th>1,000</th>		7,		1,600	1,100	2,600	009	1,300		1,200	SEP			1,000	1,200	800	006	SEP		006	1,200	1,000
500 700 900 1,000 800 400 400 500 </th <th></th> <th>7,</th> <th></th> <th>1,000</th> <th>1,000</th> <th>009</th> <th>006</th> <th>800</th> <th></th> <th>009</th> <th>OCT</th> <th></th> <th></th> <th>500</th> <th>009</th> <th>400</th> <th>400</th> <th>OCT</th> <th></th> <th>1,100</th> <th>1,000</th> <th>1,000</th>		7,		1,000	1,000	009	006	800		009	OCT			500	009	400	400	OCT		1,100	1,000	1,000
500 400 600 700 400 400 400 500 400 500 1,000 600 1,000 400 400 400 500 400 1,000 600 1,000 600 1,000 600 1,000 600 1,000 600 1,000 600 1,000 600 1,000 600 1,000 600 1,000 600 1,000 472 66 472 266 344 814 866 1,000 <		Ō		500	700	006	1,000	800		400	NOV			009	300	500	300	NOV		500	009	700
1,053 917 1,074 755 983 733 910 mean 724 828 1,037 985 585 639 mean 674 666 679 264 529 316 300 495 441 std dev 485 334 566 472 266 344 std dev 197 1,000 950 1,000 680 1,000 750 800 meain 650 550 800 960 960 550 550 meain 700 695 2,300 1,500 1,600 1,500 1,500 1,900 1,900 1,000		S	00	500	400	009	700	700		400	DEC			400	200	009	1,000	DEC		400	009	1,100
679 264 529 316 300 495 441 std dev 485 334 566 472 266 344 std dev 197 1,000 950 1,000 680 1,000 750 800 median 650 550 550 median 700 695 2,300 1,500 1,600 1,500 1,920 max 2,100 1,800 2,600 1,000 1,500 max 1,000 1,100 100 400 400 400 50 400 min 200 400 300 300 200 min 200 400		Ú	260	1,053	917	1,074	755	683		910	mean			1,037	586	282	639	mean		999	819	1,240
1,000 950 1,000 680 1,000 750 800 median 650 750 900 960 500 550 median 700 695 2,300 1,500 1,600 1,500 1,900 1,900 max 2,100 1,800 2,600 1,900 1,100 1,500 max 1,000 1,100 1,000 1,100 1,000 1,100		$^{\omega}$	88	629	264	529	316	300		441	std dev			999	472	266	344	std dev		197	245	640
2,300 1,500 2,600 1,600 1,500 1,500 1,900 max 2,100 1,800 2,600 1,900 1,100 1,500 max 1,000 1,100 1,000 1,10			000	1,000	950	1,000	089	1,000		800	median			006	096	200	550	median		969	800	1,050
100 400 400 400 400 50 400 min 200 500 400 300 300 200 min 200 400			006	2,300	1,500	2,600	1,600	1,500		1,920	max			2,600	1,900	1,100	1,500	max		1,100	1,200	3,200
		Ś	00	100	400	400	400	400		400	min			400	300	300	200	min		400	200	200

Table 2.13 Total Phosphorus (µg/l) during 2008 at the Lower Cape Fear River Program stations.

NCF6	80	200	100	120	80	06	100	130	130	120	190	110	132	48	115	270	80
C	100	100	80	130	120	140	270	170	110	100	140	120	132	48	120	270	80
DF	100	150	140	110	130	140	230	160	140	110	130	220	147	39	115	230	100
AC	150	130	170	110	150	160	220	180	160	100	130	320	165	99	120	320	100
nonth NC11	160	160	130	110	160	120	160	160	170	100	120	360	159	65	130	360	100
month	JAN	FEB	MAR	APR	MAY	NOL	nr	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	mim
SPD	40	50	50	40	50	09	30	30	30	30		10	38	13	40	09	10
M18	10	50	40	40	30	50	40	30	40	20	50	40	37	12	40	50	10
M23	40	50	50	40	50	09	09	30	40	30	50	40	45	10	45	09	30
M35	20	70	70	09	09	80	70	09	120	50	09	50	<i>L</i> 9	18	09	120	20
M42	20	80	100	70	70	70	80	110	120	20	09	09	78	20	70	120	20
M54	80	100	150	80	70	110	96	120	100	70	70	80	93	23	85	150	20
M61	70	100	160	80	06	06	130	110	110	80	80	09	26	27	06	160	09
BKK							160										
HB	06	170	190	06	100	110	JUL 270 190	160	120	100	110	70	125	40	110	190	70
NAV	120	190	160	110	120	180	270	150	120	110	190	70	149	51	135	270	20
nonth	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	mean	d dev	nedian	max	min

month	ANC	SAR	CS	GS NC403	PB	LRC	ROC	BC117	BCRR	month		rc0	029	SR	BRN	HAM	month	NCF117	B210		LVC2
JAN	30	40	40	70	70	100	260	3,550	230	JAN	40		170	20	40	80	JAN		40	10	10
FEB	80	70	70	80	150	50	170	1,770	240	FEB			280	30	50	06	FEB		40		40
MAR		80	70	160	180	40	140	400	130	MAR			190	40	09	80	MAR		40		30
APR		100	100	130	130	150	130	250	130	APR			260	70	120	100	APR		80		40
MAY		160	170	220	140	100	250	730	170	MAY			390	06	100	180	MAY		100		50
JUN	150	330	400	490	220	80	380	3,400	370	NOL		110	1,160	210	120	200	NO	120	130		80
Inf		150	510	380	230	70	380	3,860	400	TOL			099	160	80	210	nr		130		70
AUG		880	370	330	230	09	650	089	160	AUG			1,720	96	260	230	AUG		140		09
SEP		110	8	200	370	70	360	1,670	350	SEP			200	110	160	170	SEP		130		50
OCT		180	170	320	170	40	250	1,340	180	OCT			80	09	100	160	OCT		110		20
NOV		06	80	70	180	70	150	790	70	NOV			150	40	80	150	NOV		09		10
DEC	140	09	09	50	80	40	110	470	09	DEC			50	10	80	110	DEC		10		30
mean		188	178	233	179	73	569	1,576	807	mean			443	78	104	147	mean		84		41
std dev		221	152	159	92	31	148	1,260	109	std dev			485	57	57	51	std dev		43		21
median	120	105	95	190	175	70	250	1,065	175	median			230	65	06	155	median		06		40
max	230	880	510	200	370	150	650	3,860	400	max			1,720	210	260	230	max		140		80
min	30	40	40	50	70	40	110	250	09	mim			50	10	40	80	min		10		10

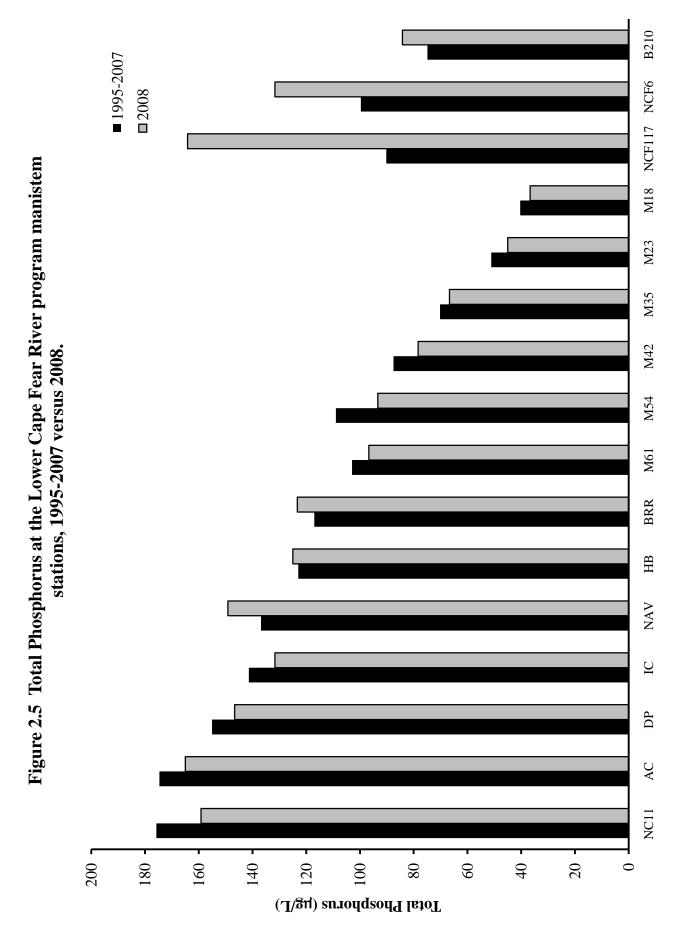


Table 2.14 Orthophosphate (µg/l) during 2008 at the Lower Cape Fear River Program stations.

																		B210	20	20	10	30	30	09	40	20	20	30	20	10	31	16	30	09	10
																		VCF117	30	30	20	70	30	50	20	20	99	09	30	20	37	17	30	70	20
BBT	30	30	20	30	40	40	20	70	40	40	30	50	39	13	40	70	20	month NCF117	JAN	FEB	MAR	APR	MAY	NOL	JOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min
NCF6	30	50	40	40	20	30	30	09	40	20	20	30	42	10	40	09	30		!																
IC	30	30	20	30	20	20	70	100	20	30	80	40	48	23	45	100	20	HAM	20	20	30	20	40	09	9	70	09	50	09	30	43	18	45	70	20
DP	30	09	70	40	9	20	70	80	20	40	09	70	22	14	40	80	30	RRS	10	20	20	20	20	20	20	40	70	40	20	20	56	17	70	70	10
AC	70	70	06	40	20	70	09	100	20	50	20	80	<i>L</i> 9	17	45	100	40	S	0	0	0	10	10	40	20	10	20	10	10	0	11	11	10	40	0
NC11	80	09	70	30	20	40	40	80	20	40	09	80	28	17	20	80	30	005	120	250	190	120	220	09	300		100	40	80	30	137	98	120	300	30
month	JAN	FEB	MAR	APR	MAY	N N	nr	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min	031	10	10	10	80	20	40	40	20	10	10	10	10	23	20	10	80	10
	-																	SRC C	10	20	10	40	30	20	20	40	09	30	20	20	32	16	30	09	10
																		month	JAN	FEB	MAR	APR	MAY	NOL	JUL	AUG	SEP	0CT	NOV	DEC	mean	std dev	median	max	min
SPD	20	10	20	20	30	20	20	10	10	10	10	10	16	9	15	30	10																		
M18	0	10	10	10	30	10	10	0	0	10	10	20	10	∞	10	30	0	BCRR	50	120	50	30	20	09	06	09	09	40		20	22	26	50	120	70
M23	30	10	10	10	40	10	10	10	10	10	20	20	16	10	10	40	0	BC117	0	20	90	30	20	70	2820	20	70	0		_	8	4	830	2,820	310
M35	30	30	30	_													Ξ	2	430	17	36	17	Ś	17	73	4	Ξ	83		310	1,10	7			
M42			` '	7	40	10	20	10	30	20	30	30	25			40		ROC BC			40 36												120	300	40
	40	40		30 20										6	30		10		140	120		40	09	130	200	300	150			50	121	75	10 120		
M54			40		40	20	20	20	40	30	40	30	33	6 8	35 30	40	20 10	LRC ROC	140	10 120	10 40	20 40	10 60	40 130	20 200	20 300	10 150	100		0 50	15 121	10 75		40	0
M61 M54	50	40	40 40	30	50 40	20 20	30 20	40 20	50 40	30 30	40 40	30 30	38 33	6 8 6	40 35 30	50 40	20 20 10	LRC ROC	10 20 140	30 10 120	10 40	20 20 40	30 10 60	40 40 130	20 20 200	30 20 300	10 10 150	50 10 100		20 0 50	26 15 121	11 10 75	10	50 40	10 0
_	40 50	50 40	60 40 40	30 30	50 50 40	30 20 20	40 30 20	60 40 20	40 50 40	40 30 30	40 40 40	30 30 30	43 38 33	6 8 6 6	40 40 35 30	60 50 40	30 20 20 10	PB 1.RC ROC	30 10 20 140	40 30 10 120	30 10 40	40 20 20 40	40 30 10 60	60 40 40 130	50 20 20 200	110 30 20 300	130 10 10 150	120 50 10 100		30 20 0 50	66 26 15 121	36 11 10 75	30 10	130 50 40	30 10 0
M61	40 40 50	70 50 40	80 60 40 40	40 30 30	50 50 50 40	20 30 20 20	50 40 30 20	70 60 40 20	50 40 50 40	40 40 30 30	40 40 40 40	30 30 30 30	48 43 38 33	17 9 9 8 9	45 40 40 35 30	80 60 50 40	20 30 20 20 10	NC403 PB LRC ROC	10 30 10 20 140	20 40 30 10 120	80 30 10 40	20 40 20 20 40	20 40 30 10 60	40 60 40 40 130	30 50 20 20 200	20 110 30 20 300	20 130 10 10 150	60 120 50 10 100		10 30 20 0 50	24 66 26 15 121	14 36 11 10 75	50 30 10	60 130 50 40	10 30 10 0
BRR M61	30 20 40 40 50	80 70 50 40	60 80 60 40 40	30 40 30 30	50 50 50 50 40	30 20 30 20 20	60 50 40 30 20	80 70 60 40 20	50 50 40 50 40	40 40 40 30 30	60 40 40 40 40	30 30 30 30 30	49 48 43 38 33	19 17 9 9 8 9	50 45 40 40 35 30	80 80 60 50 40	20 20 30 20 20 10	GS NC403 PB LRC ROC	10 10 10 30 10 20 140	20 20 40 30 10 120	10 80 30 10 40	20 20 40 20 20 40	20 20 40 30 10 60	60 40 60 40 40 130	40 30 50 20 20 200	40 20 110 30 20 300	20 20 130 10 10 150	50 60 120 50 10 100		20 10 30 20 0 50	53 29 24 66 26 15 121	47 15 14 36 11 10 75	30 20 20 50 30 10	60 60 130 50 40	10 10 30 10 0

Table 2.15 Chlorophyll $a \ (\mu g / l)$ during 2008 at the Lower Cape Fear River Program stations.

																	2																
																	LVC2	1.2	2.9	. « «	1.6	4.4	7.7	27.6	0.9	1.0	0.3	2.3	5.0	7.1	2.6	27.6	0
																	COL	0.7	7: -	33.	0.8	6.7		18.9	1.0	1.0	0.2	0.3	3.2	5.3	1.0	18.9	0
																	B210	0.4	S. 1	t C	0.5	1.2	2.2	6.4	0.0	1.0	0.7	0.4	1.4	1.6	1.1	6.4	
																	NCF117	0.5	6.0	0.9	0.5	1.3	4.3	32.1	2.0	1.0	0.3	0.2	3.8	9.8	1.0	32.1	0
	7.7	4. c	1 -	1.5	9.6	12.0	31.7	5.0	1.0	1.5	1.5	6.1	8.4	1.5	31.7	1.0	-	JAN	VAD	APR	MAY	JUN	nr	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	
	1.9 د ر	 	. 4	1.2	6.3	3.9	13.4	1.0	1.0	9.0	1.7	2.9	3.5	1.1	13.4	9.0																	
	4	7:1	1.0	1.0	3.1	3.1	11.7	1.0	1.0	6.0	2.7	2.4	2.9	2.4	11.7	6.0	HAM	2.6	32.4	0.6	0.5	1.6	7.3	40.3	2.0	1.0	0.5	1.5	8.0	12.9	2.0	40.3	1
•	F. 1.3	2.8	2.0	1.1	3.0	4.4	14.7	2.0	1.0	1.2	3.2	3.3	3.6	2.4	14.7	1.0	BRN	1.5	3.I 1.5	3.4	6.0	1.5	8.1	32.0	1.0	1.0	1.1	1.5	4.7	8.5	1.5	32.0	0
,	I:1 ?	5.4	2:0	1.2	4.9	11.1	22.9	2.0	0.5	1.1	4.3	4.7	6.1	5.6	22.9	0.5	SR	2.0	4.6	7 5	2.3	104.1	14.3	22.0	3.0	2.0	1.3	2.3	13.6	27.9	2.7	104.1	,
	7.7	c.c 2, c	2.7	2.0	12.8	24.1	34.2	2.0	1.0	1.1	5.0	7.7	10.3	5.6	34.2	1.0	CCO	7.8	1.0	3.3	1.1	1.6	1.2	42.9	1.0	1.0	1.7	1.4	5.0	11.4	1.6	42.9	,
	NA.	MAD	APR	MAY	NOI	nr	AUG	SEP	OCT	NOV	DEC	mean	td dev	nedian	max	min	ГСО	0.7	5.1	2.5	0.7	0.7	1.2	12.6	0.0	0.5	0.4	8.0	1.8	3.3	8.0	12.6	0
ľ													S.	п			C	0.8		1 0	0.7	£.	6.0	5.8	1.0	0:	4.	.3	1.8	3.	-:	∞.	
																	8	0	٠, -	- (0	α	0	3	Т	1	0.4	1	_	_	Т	ιC)	(
																	_			4 Z										dev 1	dian 1	eax 2	
1,	5				8	4	16	0.	0	3	0		2	3	0:	•	\perp			APR		JUN 3								std dev	median 1	max 5	
	5.5	0.7	4.1	3.9	8.9	9.4	9.5	16.0	3.0	3.3	2.9	6.4	3.6	5.3	16.0	2.9	month	JAN	MAB		MAY	NOI	JUL	AUG	SEP	OCT	NOV	DEC	mean				
OIG OIL	4.5	5.7 5.3															month	JAN	MAB		MAY		JUL	AUG	SEP	OCT	NOV	DEC	mean				
		10.8 12.2 7.0	4	5.0	8.5	5.7	8.3	11.0	2.0	4.3	3.6	6.3	2.9	5.4	12.2	2.0	7 BCRR month	6.7 JAN	/./ FEB	 -	1.3 MAY	NOI	113.8 JUL	14.6 AUG	4.0 SEP	1.0 OCT	0.2 NOV	0.5 DEC	44.0 mean	104.6	2.8	376.0	•
OTTH CTTH	0.1 0.61		3.5 4.5	3.4 5.0	13.0 8.5	4.9 5.7	9.0 8.3	13.0 11.0	4.0 2.0	4.9 4.3	3.3 3.6	6.4 6.3	3.9 2.9	4.9 5.4	13.0 12.2	2.0	BC117 BCRR month	0.8 6.7 JAN	1.8 /./ FEB	7.7	4.6 1.3 MAY	376.0 JUN	5.8 113.8 JUL	14.4 14.6 AUG	7.0 4.0 SEP	3.0 1.0 OCT	0.7 0.2 NOV	1.0 0.5 DEC	4.6 44.0 mean	4.0 104.6	3.4 2.8	14.4 376.0	
271	4.1 I.0	10.8	7.7 7.8 7.4 7.8	3.8 3.4 5.0	29.5 13.0 8.5	15.9 4.9 5.7	23.7 9.0 8.3	40.0 13.0 11.0	3.0 4.0 2.0	3.1 4.9 4.3	1.8 3.3 3.6	11.7 6.4 6.3	12.2 3.9 2.9	4.4 4.9 5.4	40.0 13.0 12.2	1.8 1.0 2.0	ROC BC117 BCRR month	0.8 0.8 6.7 JAN	0.9 1.8 /./ FEB	10 27 11	2.8 4.6 1.3 MAY	3.7 376.0 JUN	24.0 5.8 113.8 JUL	16.3 14.4 14.6 AUG	1.0 7.0 4.0 SEP	1.0 3.0 1.0 OCT	0.7 0.7 0.2 NOV	1.4 1.0 0.5 DEC	4.4 4.6 44.0 mean	7.2 4.0 104.6	1.0 3.4 2.8	24.0 14.4 376.0	t o
2000	3.9 4.1 1.0	7.0 10.8	2.5 4.5 3.5 4.5	5.2 3.8 3.4 5.0	25.2 29.5 13.0 8.5	21.4 15.9 4.9 5.7	39.8 23.7 9.0 8.3	35.0 40.0 13.0 11.0	3.0 3.0 4.0 2.0	2.7 3.1 4.9 4.3	1.8 1.8 3.3 3.6	12.8 11.7 6.4 6.3	13.2 12.2 3.9 2.9	5.9 4.4 4.9 5.4	39.8 40.0 13.0 12.2	1.8 1.8 1.0 2.0	LRC ROC BC117 BCRR month	5.7 0.8 0.8 6.7 JAN	2.8 U.9 1.8 /./ FEB	2.1 7.7 1.3	14.3 2.8 4.6 1.3 MAY	0.9 3.7 376.0 JUN	12.5 24.0 5.8 113.8 JUL	7.0 16.3 14.4 14.6 AUG	9.0 1.0 7.0 4.0 SEP	2.0 1.0 3.0 1.0 OCT	59.3 0.7 0.7 0.2 NOV	30.4 1.4 1.0 0.5 DEC	12.7 4.4 4.6 44.0 mean	16.0 7.2 4.0 104.6	6.4 1.0 3.4 2.8	59.3 24.0 14.4 376.0	T C C C C C C C C C C C C C C C C C C C
200	2.8 3.9 4.1 1.0	6.6 7.0 10.8	25 25 45 35 45	3.4 5.2 3.8 3.4 5.0	23.9 25.2 29.5 13.0 8.5	26.7 21.4 15.9 4.9 5.7	24.0 39.8 23.7 9.0 8.3	11.0 35.0 40.0 13.0 11.0	2.0 3.0 3.0 4.0 2.0	2.4 2.7 3.1 4.9 4.3	1.3 1.8 1.8 3.3 3.6	9.3 12.8 11.7 6.4 6.3	9.4 13.2 12.2 3.9 2.9	4.3 5.9 4.4 4.9 5.4	26.7 39.8 40.0 13.0 12.2	1.3 1.8 1.8 1.0 2.0	PB LRC ROC BC117 BCRR month	8.8 5.7 0.8 0.8 6.7 JAN	8.0 2.8 0.9 1.8 /./ FEB	53 56 10 77 11	12.0 14.3 2.8 4.6 1.3 MAY	2.3 0.9 3.7 376.0 JUN	79.9 12.5 24.0 5.8 113.8 JUL	173.3 7.0 16.3 14.4 14.6 AUG	163.0 9.0 1.0 7.0 4.0 SEP	4.0 2.0 1.0 3.0 1.0 OCT	1.1 59.3 0.7 0.7 0.2 NOV	2.3 30.4 1.4 1.0 0.5 DEC	41.9 12.7 4.4 4.6 44.0 mean	60.7 16.0 7.2 4.0 104.6	8.4 6.4 1.0 3.4 2.8	173.3 59.3 24.0 14.4 376.0	
OTHER COMPANY SECTIONS TO SECTION ASSESSMENT OF THE PROPERTY O	2.7 2.8 3.9 4.1 1.0	52 68 42 65	33 25 25 45 35 45	4.8 3.4 5.2 3.8 3.4 5.0	19.3 23.9 25.2 29.5 13.0 8.5	21.4 26.7 21.4 15.9 4.9 5.7	18.6 24.0 39.8 23.7 9.0 8.3	7.0 11.0 35.0 40.0 13.0 11.0	1.0 2.0 3.0 3.0 4.0 2.0	2.4 2.4 2.7 3.1 4.9 4.3	1.2 1.3 1.8 1.8 3.3 3.6	7.5 9.3 12.8 11.7 6.4 6.3	7.3 9.4 13.2 12.2 3.9 2.9	3.9 4.3 5.9 4.4 4.9 5.4	21.4 26.7 39.8 40.0 13.0 12.2	1.0 1.3 1.8 1.8 1.0 2.0	NC403 PB LRC ROC BC117 BCRR month	6.5 8.8 5.7 0.8 0.8 6.7 JAN	5.1 8.0 2.8 0.9 1.8 /./ FEB	1. 7. 1. 3. 3. 4.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	5.2 12.0 14.3 2.8 4.6 1.3 MAY	43.0 2.3 0.9 3.7 376.0 JUN	39.6 79.9 12.5 24.0 5.8 113.8 JUL	56.3 173.3 7.0 16.3 14.4 14.6 AUG	12.0 163.0 9.0 1.0 7.0 4.0 SEP	8.0 4.0 2.0 1.0 3.0 1.0 OCT	1.3 1.1 59.3 0.7 0.7 0.2 NOV	1.9 2.3 30.4 1.4 1.0 0.5 DEC	20.4 41.9 12.7 4.4 4.6 44.0 mean	29.3 60.7 16.0 7.2 4.0 104.6	7.3 8.4 6.4 1.0 3.4 2.8	100.9 173.3 59.3 24.0 14.4 376.0	
	4.5 2.7 2.8 3.9 4.1 1.0	3.7 6.2 6.6 7.0 10.8 40 5.3 6.8 4.3 6.5	51 33 25 25 45 35 45	6.8 4.8 3.4 5.2 3.8 3.4 5.0	16.1 19.3 23.9 25.2 29.5 13.0 8.5	11.4 21.4 26.7 21.4 15.9 4.9 5.7	24.5 18.6 24.0 39.8 23.7 9.0 8.3	9.0 7.0 11.0 35.0 40.0 13.0 11.0	1.0 1.0 2.0 3.0 3.0 4.0 2.0	2.7 2.4 2.4 2.7 3.1 4.9 4.3	1.1 1.2 1.3 1.8 1.8 3.3 3.6	7.5 7.5 9.3 12.8 11.7 6.4 6.3	6.6 7.3 9.4 13.2 12.2 3.9 2.9	4.8 3.9 4.3 5.9 4.4 4.9 5.4	24.5 21.4 26.7 39.8 40.0 13.0 12.2	1.0 1.0 1.3 1.8 1.8 2.0	GS NC403 PB LRC ROC BC117 BCRR month	2.6 6.5 8.8 5.7 0.8 0.8 6.7 JAN	7.5 5.1 5.0 2.8 0.9 1.8 7.1 FEB	C:1 C: +:2 T:+ O:+ +:0 C:2 C:	2.4 5.2 12.0 14.3 2.8 4.6 1.3 MAY	3.7 376.0 JUN	36.1 39.6 79.9 12.5 24.0 5.8 113.8 JUL	281.4 56.3 173.3 7.0 16.3 14.4 14.6 AUG	3.0 12.0 163.0 9.0 1.0 7.0 4.0 SEP	2.0 8.0 4.0 2.0 1.0 3.0 1.0 OCT	0.6 1.3 1.1 59.3 0.7 0.7 0.2 NOV	1.0 1.9 2.3 30.4 1.4 1.0 0.5 DEC	38.3 20.4 41.9 12.7 4.4 4.6 44.0 mean	80.1 29.3 60.7 16.0 7.2 4.0 104.6	2.6 7.3 8.4 6.4 1.0 3.4 2.8	281.4 100.9 173.3 59.3 24.0 14.4 376.0	
	3.1 4.5 2.7 2.8 3.9 4.1 1.0	4.0 5.7 6.2 6.0 7.0 10.8 3.7 4.0 5.2 6.8 4.2 6.5	38 51 33 25 25 45 35 45	3.3 6.8 4.8 3.4 5.2 3.8 3.4 5.0	16.1 19.3 23.9 25.2 29.5 13.0 8.5	9.0 11.4 21.4 26.7 21.4 15.9 4.9 5.7	7.8 24.5 18.6 24.0 39.8 23.7 9.0 8.3	5.0 9.0 7.0 11.0 35.0 40.0 13.0 11.0	1.0 1.0 1.0 2.0 3.0 3.0 4.0 2.0	2.7 2.4 2.4 2.7 3.1 4.9 4.3	1.0 1.1 1.2 1.3 1.8 1.8 3.3 3.6	7.5 7.5 9.3 12.8 11.7 6.4 6.3	2.9 6.6 7.3 9.4 13.2 12.2 3.9 2.9	3.5 4.8 3.9 4.3 5.9 4.4 4.9 5.4	10.1 24.5 21.4 26.7 39.8 40.0 13.0 12.2	1.0 1.0 1.3 1.8 1.8 2.0	SAR GS NC403 PB LRC ROC BC117 BCRR month	1.2 2.6 6.5 8.8 5.7 0.8 0.8 6.7 JAN	7.5 5.1 5.0 2.8 0.9 1.8 7.1 FEB	11 75 10 35 56 71 65 71	1.5 2.4 5.2 12.0 14.3 2.8 4.6 1.3 MAY	1.4 118.3 100.9 43.0 2.3 0.9 3.7 376.0 JUN	7.2 36.1 39.6 79.9 12.5 24.0 5.8 113.8 JUL	58.7 281.4 56.3 173.3 7.0 16.3 14.4 14.6 AUG	3.0 3.0 12.0 163.0 9.0 1.0 7.0 4.0 SEP	2.0 2.0 8.0 4.0 2.0 1.0 3.0 1.0 OCT	0.5 0.6 1.3 1.1 59.3 0.7 0.7 0.2 NOV	0.5 1.0 1.9 2.3 30.4 1.4 1.0 0.5 DEC	6.9 38.3 20.4 41.9 12.7 4.4 4.6 44.0 mean	15.7 80.1 29.3 60.7 16.0 7.2 4.0 104.6	1.9 2.6 7.3 8.4 6.4 1.0 3.4 2.8	281.4 100.9 173.3 59.3 24.0 14.4 376.0	

BBT**■** 1995-2007 B210 □ 2008 Figure 2.6 Chlorophyll a at the Lower Cape Fear River program mainstem stations, 1995-M18 NCF117 NCF6 M23 M35 M42 2007 versus 2008. M54 M61 BRR HB NAV Γ DP ACNC11 14 10 12 ∞ 7 9 0 Chlorophyll a (µg/L)

Table 2.16 Biochemical Oxygen Demand (mg/l) during 2008 at the Lower Cape Fear River Program stations.

5-Day Biochemical Oxygen Demand

month	NC11	\mathbf{AC}	ANC	SAR	GS	N403	ROC	BC117	NCF117	B210	LVC2	\mathbf{BBT}
JAN	1.2	1.2	1.4	8.0	9.0	0.7	8.0	1.0	1.0	1.0	1.2	1.1
FEB			4.9	9.0	8.0	9.0	0.5	6.0	0.4	0.2	1.0	
MAR	8.0	1.8	2.0	1.3	8.0	1.2	1.7	1.8	1.3	6.0	2.2	1.1
APR	6.0	1.0	2.1	1.6	1.5	1.2	1.5	1.5	2.4	1.8	2.3	6.0
MAY	1.2	1.3	1.4	1.8	1.6	2.2	2.8	2.3	1.1	1.3	3.3	1.1
NO	2.1	1.3	4.4	8.0	8.9	7.8	6.0	1.6	6.0	1.0	1.3	6.0
nr	2.3	2.1	1.9	8.0	4.6	2.9	2.8	8.0	9.0	1.4	2.9	
AUG	2.0	1.5	2.1	6.0	6.4	1.8	1.2	1.5	0.7	1.0	3.3	2.0
SEP	1.5	1.6	2.2	1.2	1.6	2.3	1.3	1.3	0.7	2.5	1.6	1.4
OCT	1.0	0.7	1.8	1.7	1.2	1.4	1.4	2.1	1.3	2.1	1.7	1.3
NOV												
DEC			1.3	2.0	2.4	1.3	1.1	1.0				
median	1.2	1.3	2.0	1.2	1.6	1.4	1.3	1.5	1.0	1.2	2.0	1.1
mean	1.4	1.4	2.3	1.2	2.8	2.1	1.5	1.4	1.0	1.3	2.1	1.2
max	2.3	2.1	4.9	2.0	8.9	7.8	2.8	2.3	2.4	2.5	3.3	2.0
min	8.0	0.7	1.3	9.0	9.0	9.0	0.5	8.0	0.4	0.2	1.0	6.0
stdev	9.0	0.4	1.2	0.5	2.7	2.0	0.7	0.5	9.0	0.7	6.0	0.4

20-Day Biochemical Oxygen Demand

month	NC11	AC	ANC	SAR	CS	N403	ROC	BC117	NCF117	B210	LVC2	BBT
JAN	3.6	4	2.8	1.9	1.6	1.8	3.3	2.5	2.6	1.9	4.4	3.1
FEB			9.5	2.4	2.5	2.2	2.3	3.2	2.4	1.2	8.5	
MAR	2.9	5.7	5.1	4.1	3.2	3.5	4.5	9.9	3.3	1.5	5.7	2.2
APR	2.5	2.9		5.2	5.3	3.1	4.1	3.7	5.6	3.9	5.7	2.5
MAY	3.9	3.9	4.9	4.0	3.7	4.9	5.6	5.2	3.2	3.3	9.1	3.5
NOL	4.5	4.9	>8.9	3.2	>9.1	>9.0	3.3	4.5	2.8	3.1	3.9	3.5
\mathbf{n}	5.3	7.3	4.5	2.8	7.8	8.0	0.9	2.3	1.5	3.2	8.3	
AUG	3.0	3.1	4.6	3.2	14.8	5.5	4.6	4.7	2.0	3.3	8.7	3.3
SEP	4.0	4.3	5.5	4.6	4.4	5.4	4. 4.	3.9	2.3	5.4	5.5	3.9
OCT	3.1	2.4	5.6	8.4	3.4	4.0	4.4	5.5	4.0	4.3	4.8	3.9
NOV												
DEC												
median	3.6	4.0	5.0	3.6	3.7	4.0	4.4	4.2	2.7	3.3	5.7	3.4
mean	3.6	4.3	5.3	3.6	5.2	4.3	4.3	4.2	3.0	3.1	6.5	3.2
max	5.3	7.3	9.5	5.2	14.8	8.0	0.9	9.9	5.6	5.4	9.1	3.9
min	2.5	2.4	2.8	1.9	1.6	1.8	2.3	2.3	1.5	1.2	3.9	2.2
stdev	6.0	1.5	1.9	1.1	4.0	1.9	1.1	1.4	1.2	1.3	2.0	9.0

Table 2.17 Fecal Coliform (cfu/100 ml) during 2008 at the Lower Cape Fear River Program stations.

																		į	SC-CH	88 46	37	45	.37	78	37	37	119	99	51	96	10	.05	119	37	75
																				4 %															
																				116															
																				33															
																			NCF117	46 22	19	64	118	4	146	182	5,500	95	64	23	524	1,501	5,500	4	69
																		_		JAN															_
NCF6	36	82	13	29	100	163	28	28	100	34	580	33	105	149	580	13	59	ļ	HAM	240 192	108	240	65	84	52	176	2,350	200	760	819	466	621	2,350	52	244
IC	26	27	22	89	46	40	15	40	4	26	420	54	69	107	420	15	42		BRN	42 35	82	230	72	1,000	99	637	455	546	620	270	338	299	1,000	35	197
DP	49	20	12	37	4	31	17	38	94	31	220	188	89	65	220	12	46	{	SR	110	100	80	29	819	235	109	285	92	182	216	197	200	819	59	141
AC	40	40	15	13	27	17	2	19	164	20	2,000	219	215	542	2,000	7	38	(025	119	32	230	164	73	92	120	98	80	74	148	102	99	230	20	85
NC11	36	31	11	~	7	4	4	15	48	31	260	500	08	14	200	4	24	Č	CO	110 28	32	009	34	28	4	146	104	100	48	260	130	156	009	28	80
nonth	JAN	FEB	AAR	'PR	IAY	ND	ΩĽ	.UG	SEP.	CT	10V	DEC	nean	d dev	nax	min	mean	ē.	SRC SRC	119 64	430	300	162	230	82	195	273	305	120	009	061	929	2,300	64	254
_	1	_		-	2	_	_	⋖	• 1	_	_	_	I	\mathbf{z}	_	_	ě	,	٦			(4								1	7				
-	l -		-	4	Z	7	7	V	•	0	_		"	st	-	_	Ge	_	_	JAN															eomean
SPD	!]	10		9											13	_	5 Ger	_	_																Geomean
	!]			9	~	2		< 2	1	11	4	13	9	4	13	1	5 (month		MAR	APR	MAY	NOL	JUL	AUG	SEP	OCT	NOV	DEC	mean	std dev	max	mim	0
SPD	2 2	1 10	4 9	9	3 8	6 2	<1 3	<2 <2	1	<2 11	29 4	52 13	9	16 4	52 13	1 1	5 5 (•	7 BCRR month	JAN	490 MAR	109 APR	1,550 MAY	46 JUN	91 JUL	9,400 AUG	2,000 SEP	2,273 OCT	145 NOV	181 DEC	1,376 mean	2,542 std dev	9,400 max	46 min	357
M18 SPD	2 2 2	8 1 10	4 4 9	9 9	9 3 8	16 6 2	2 <1 3	4 <2 <2	<1 1 1	4 <2 11	2 29 4	24 52 13	7 12 6	7 16 4	24 52 13	2 1 1	5 5 5 C		BC117 BCRR month	146 JAN 75 FEB	1,200 490 MAR	1,455 109 APR	819 1,550 MAY	637 46 JUN	1,364 91 JUL	1,819 9,400 AUG	550 2,000 SEP	910 2,273 OCT	1,000 145 NOV	490 181 DEC	910 1,376 mean	455 2,542 std dev	1,819 9,400 max	240 46 min	788 357 C
M23 M18 SPD	5 2 2 2	16 8 1 10	12 4 4 9	4 6 6	6 9 3 8	20 16 6 2	2 2 <1 3	<2 4 <2 <2	3 <1 1 1	4 4 <2 11	19 2 29 4	4 24 52 13	9 7 12 6	6 7 16 4	20 24 52 13	2 2 1 1	7 5 5 5 C		ROC BC117 BCRR month	430 146 JAN 240 75 FEB	240 1,200 490 MAR	118 1,455 109 APR	500 819 1,550 MAY	100 637 46 JUN	46 1,364 91 JUL	591 1,819 9,400 AUG	135 550 2,000 SEP	270 910 2,273 OCT	210 1,000 145 NOV	181 490 181 DEC	212 910 1,376 mean	166 455 2,542 std dev	max 691 1,819 9,400	28 240 46 min	154 788 357 C
M35 M23 M18 SPD	8 5 2 2 2	25 16 8 1 10	35 12 4 4 9	8 4 6 6	23 6 9 3 8	10 20 16 6 2	10 2 2 < 1 3	4 <2 4 <2 <2	11 3 <1 1 1	19 4 4 <2 11	8 19 2 29 4	28 4 24 52 13	16 9 7 12 6	9 6 7 16 4	35 20 24 52 13	4 2 2 1 1	13 7 5 5 5 C		LRC ROC BC117 BCRR month	119 430 146 JAN 28 240 75 FEB	14 240 1,200 490 MAR	36 118 1,455 109 APR	134 500 819 1,550 MAY	110 100 637 46 JUN	682 46 1,364 91 JUL	1,050 591 1,819 9,400 AUG	5 135 550 2,000 SEP	127 270 910 2,273 OCT	195 210 1,000 145 NOV	546 181 490 181 DEC	250 212 910 1,376 mean	317 166 455 2,542 std dev	max 1,050 591 1,819 9,400	5 28 240 46 min	94 154 788 357 C
M42 M35 M23 M18 SPD	14 8 5 2 2 2	31 25 16 8 1 10	50 35 12 4 4 9	8 8 4 6 6	41 23 6 9 3 8	22 10 20 16 6 2	16 10 2 2 <1 3	13 4 <2 4 <2 <2	19 11 3 <1 1 1	37 19 4 4 <2 11	19 8 19 2 29 4	13 28 4 24 52 13	24 16 9 7 12 6	12 9 6 7 16 4	50 35 20 24 52 13	13 4 2 2 1 1	22 13 7 5 5 5 C		3 PB LRC ROC BC117 BCRR month	82 119 430 146 JAN 17 28 240 75 FEB	480 14 240 1,200 490 MAR	28 36 118 1,455 109 APR	182 134 500 819 1,550 MAY	115 110 100 637 46 JUN	28 682 46 1,364 91 JUL	30,000 1,050 591 1,819 9,400 AUG	130 5 135 550 2,000 SEP	5,100 127 270 910 2,273 OCT	455 195 210 1,000 145 NOV	127 546 181 490 181 DEC	3,133 250 212 910 1,376 mean	8,213 317 166 455 2,542 std dev	30,000 1,050 591 1,819 9,400 max	28 5 28 240 46 min	311 94 154 788 357 C
l M54 M42 M35 M23 M18 SPD	19 14 8 5 2 2 2	31 31 25 16 8 1 10	40 50 35 12 4 4 9	15 8 8 4 6 6	63 41 23 6 9 3 8	42 22 10 20 16 6 2	32 16 10 2 2 < 1 3	20 13 4 <2 4 <2 <2	57 19 11 3 <1 1 1	44 37 19 4 4 <2 11	33 19 8 19 2 29 4	8 13 28 4 24 52 13	36 24 16 9 7 12 6	15 12 9 6 7 16 4	63 50 35 20 24 52 13	8 13 4 2 2 1 1	32 22 13 7 5 5 5 C		NC403 PB LRC ROC BC117 BCRR month	840 82 119 430 146 JAN 109 17 28 240 75 FEB	64 480 14 240 1,200 490 MAR	98 28 36 118 1,455 109 APR	114 182 134 500 819 1,550 MAY	400 115 110 100 637 46 JUN	144 28 682 46 1,364 91 JUL	1,091 30,000 1,050 591 1,819 9,400 AUG	172 130 5 135 550 2,000 SEP	280 5,100 127 270 910 2,273 OCT	210 455 195 210 1,000 145 NOV	82 127 546 181 490 181 DEC	229 3,133 250 212 910 1,376 mean	279 8,213 317 166 455 2,542 std dev	1,091 30,000 1,050 591 1,819 9,400	28 28 240 46 min	142 311 94 154 788 357 C
M61 M54 M42 M35 M23 M18 SPD	27 19 14 8 5 2 2 2	46 31 31 25 16 8 1 10	35 40 50 35 12 4 4 9	37 15 8 8 4 6 6	114 63 41 23 6 9 3 8	72 42 22 10 20 16 6 2	13 32 16 10 2 2 <1 3	48 20 13 4 <2 4 <2 <2	91 57 19 11 3 <1 1 1	48 44 37 19 4 4 <2 11	40 33 19 8 19 2 29 4	19 8 13 28 4 24 52 13	48 36 24 16 9 7 12 6	29 15 12 9 6 7 16 4	114 63 50 35 20 24 52 13	13 8 13 4 2 2 1 1	41 32 22 13 7 5 5 5 C		GS NC403 PB LRC ROC BC117 BCRR month	64 840 82 119 430 146 JAN 28 109 17 28 240 75 FEB	73 64 480 14 240 1,200 490 MAR	46 98 28 36 118 1,455 109 APR	73 114 182 134 500 819 1,550 MAY	100 400 115 110 100 637 46 JUN	540 144 28 682 46 1,364 91 JUL	204 1,091 30,000 1,050 591 1,819 9,400 AUG	185 172 130 5 135 550 2,000 SEP	145 280 5,100 127 270 910 2,273 OCT	155 210 455 195 210 1,000 145 NOV	82 82 127 546 181 490 181 DEC	189 229 3,133 250 212 910 1,376 mean	170 279 8,213 317 166 455 2,542 std dev	570 1,091 30,000 1,050 591 1,819 9,400	46 28 28 28 240 46 min	139 142 311 94 154 788 357 C
BRR M61 M54 M42 M35 M23 M18 SPD	21 27 19 14 8 5 2 2 2	52 46 31 31 25 16 8 1 10	30 35 40 50 35 12 4 4 9	28 37 15 8 8 4 6 6	80 114 63 41 23 6 9 3 8	37 72 42 22 10 20 16 6 2	15 13 32 16 10 2 2 <1 3	84 48 20 13 4 <2 4 <2 <2	58 91 57 19 11 3 <1 1 1	164 48 44 37 19 4 4 <2 11	104 40 33 19 8 19 2 29 4	5 19 8 13 28 4 24 52 13	57 48 36 24 16 9 7 12 6	43 29 15 12 9 6 7 16 4	164 114 63 50 35 20 24 52 13	5 13 8 13 4 2 2 1 1	41 41 32 22 13 7 5 5 5 C		SAR GS NC403 PB LRC ROC BC117 BCRR month	100 64 840 82 119 430 146 JAN 570 28 109 17 28 240 75 FEB	118 73 64 480 14 240 1,200 490 MAR	144 46 98 28 36 118 1,455 109 APR	96 73 114 182 134 500 819 1,550 MAY	80 100 400 115 110 100 637 46 JUN	773 540 144 28 682 46 1,364 91 JUL	520 204 1,091 30,000 1,050 591 1,819 9,400 AUG	150 185 172 130 5 135 550 2,000 SEP	300 145 280 5,100 127 270 910 2,273 OCT	1,091 155 210 455 195 210 1,000 145 NOV	546 82 82 127 546 181 490 181 DEC	384 189 229 3,133 250 212 910 1,376 mean	322 170 279 8,213 317 166 455 2,542 std dev	1,091 570 1,091 30,000 1,050 591 1,819 9,400	80 46 28 28 5 28 240 46 min	258 139 142 311 94 154 788 357 C
NAV HB BRR M61 M54 M42 M35 M23 M18 SPD	30 21 27 19 14 8 5 2 2 2	52 52 46 31 31 25 16 8 1 10	460 30 35 40 50 35 12 4 4 9	33 28 37 15 8 8 4 6 6	36 80 114 63 41 23 6 9 3 8	8 37 72 42 22 10 20 16 6 2	11 15 13 32 16 10 2 2 <1 3	48 84 48 20 13 4 <2 4 <2 <2	23 58 91 57 19 11 3 <1 1 1	54 164 48 44 37 19 4 4 <2 11	98 104 40 33 19 8 19 2 29 4	45 5 19 8 13 28 4 24 52 13	74 57 48 36 24 16 9 7 12 6	43 29 15 12 9 6 7 16 4	460 164 114 63 50 35 20 24 52 13	5 13 8 13 4 2 2 1 1	an 40 41 41 32 22 13 7 5 5 5 C		SAR GS NC403 PB LRC ROC BC117 BCRR month	51 90 100 64 840 82 119 430 146 JAN	104 118 73 64 480 14 240 1,200 490 MAR	144 46 98 28 36 118 1,455 109 APR	560 96 73 114 182 134 500 819 1,550 MAY	110 80 100 400 115 110 100 637 46 JUN	208 773 540 144 28 682 46 1,364 91 JUL	100 520 204 1,091 30,000 1,050 591 1,819 9,400 AUG	32 150 185 172 130 5 135 550 2,000 SEP	290 300 145 280 5,100 127 270 910 2,273 OCT	55 1,091 155 210 455 195 210 1,000 145 NOV	91 546 82 82 127 546 181 490 181 DEC	148 384 189 229 3,133 250 212 910 1,376 mean	142 322 170 279 8,213 317 166 455 2,542 std dev	560 1,091 570 1,091 30,000 1,050 591 1,819 9,400	80 46 28 28 5 28 240 46 min	258 139 142 311 94 154 788 357 C

B210 NCF117 NCF6 **■** 1995-2007 Figure 2.7 Fecal Coliform Bacteria at the Lower Cape Fear River program mainstem □ 2008 M18 M23 M35 M42 stations, 1995-2007 versus 2008. M54 M61 BRR HB NAV Γ DP ACNC11 100 90 80 70 09 50 40 30 20 10 0 Fecal Coliform Bacteria (cfu/100 mL)

3.0 Water Quality Evaluation by Subbasin in the Lower Cape Fear River System

Matthew R. McIver, Michael A. Mallin, and James F. Merritt

Aquatic Ecology Laboratory
Center for Marine Science University of North Carolina Wilmington

3.0 Water Quality Evaluation by Subbasin

This section details an evaluation of water quality within each subbasin for dissolved oxygen, turbidity, chlorophyll *a*, fecal coliform bacteria, nitrate-nitrite and total phosphorus at the LCFRP sampling sites. Monthly data from January to December 2008 are used in these comparisons.

3.1 Introduction

The NC Division of Water Quality prepares a basinwide water quality plan for each of the seventeen major river basins in the state every five years (NCDENR, DWQ Cape Fear River Basinwide Water Quality Plan, October 2005). The basinwide approach is a non-regulatory watershed based approach to restoring and protecting the quality of North Carolina's surface waters. The first basinwide plan for the Cape Fear River was completed in 1996 and five-year interval updates have been completed in 2000 and 2005.

The goals of the basinwide program are to:

- -Identify water quality problems and restore full use to impaired waters.
- -Identify and protect high value resource waters.
- -Protect unimpaired waters while allowing for reasonable economic growth.

DWQ accomplishes these goals through the following objectives:

- -Collaborate with other agencies to develop appropriate management strategies.
- -Assure equitable distribution of waste assimilative capacity.
- -Better evaluate cumulative effects of pollution.
- -Improve public awareness and involvement.

The US Geological Survey (USGS) identifies 6 major hydrological areas in the Cape Fear River Basin. Each of these hydrologic areas is further divided into subbasins by DWQ. There are 24 subbasins within the Cape Fear River basin, each denoted by six digit numbers, 03-06-01 to 03-06-24 (NCDENR-DWQ, October 2005).

All surface waters in the state are assigned a *primary* classification that is appropriate to the best uses of that water. North Carolina's Water Quality Standards Program adopted

classifications and water quality standards for all the state's river basins by 1963. The program remains consistent with the Federal Clean Water Act and its amendments. DWQ assesses ecosystem health and human health risk through the use of five use support categories: aquatic life, recreation, fish consumption, water supply and shellfish harvesting. These categories are tied to the uses associated with the primary classifications applied to NC rivers and streams. Waters are supporting if data and information used to assign a use support rating meet the criteria for that use category. If these criteria are not met then the waters are Impaired. Waters with inconclusive data and information are Not Rated. Waters with insufficient data or information are rated No Data. Because of a statewide fish consumption advisory for several fishes, all waters in the basin are impaired on an evaluated basis.

For ambient water quality monitoring criteria DWQ uses water quality data collected by both their own monitoring system as well as several NPDES discharger coalitions including the Lower Cape Fear River Program. The parameters used to assess water quality in the aquatic life category include dissolved oxygen (DO), pH, chlorophyll *a* and turbidity as well as benthos and fish data. DWQ rates use support based on whether the NC State Water Quality Standard is exceeded as listed below:

Standard exceeded in < 10% of samples = Supporting Standard exceeded in > 10% of samples = Impaired Less than 10 samples collected = Not Rated DO and pH standard exceeded in swamps = Not Rated

*Some of the NC State Water Quality standards are written with more specific criteria and the reader should refer to http://h2o.enr.state.nc.us/csu/index.htm for complete details about the use of the standards.

3.2 Methods

The UNCW Aquatic Ecology Laboratory (AEL) has developed an evaluation system that incorporates some of the guidelines used by DWQ and utilizes data collected by the Lower Cape Fear River Program. This approach determines a water quality "rating" for the parameters dissolved oxygen, chlorophyll *a*, fecal coliform bacteria, field turbidity and the nutrient species nitrate-nitrite (referred to as nitrate) and total phosphorus. For dissolved oxygen, chlorophyll *a*, and fecal coliform bacteria we compare LCFRP data to the N.C. State Water Quality Standards (http://h2o.enr.state.nc.us/csu/index.htm). Fecal coliform bacteria data is analyzed considering human contact standards, not shellfishing standards.

The NC DWQ does not have surface water quality standards for nitrate and total phosphorus. The AEL water quality status is based on levels noted to be problematic in the scientific literature and our own published research. Based on data from four years of nutrient addition bioassay experiments using water from the Black and Northeast Cape Fear Rivers, Colly Creek and Great Coharie Creek, the UNCW-AEL considers total phophorus levels of 500 µg/L or greater potentially harmful to water quality in all the waters of the Cape Fear River watershed. Nitrate levels of 200 µg/L, 500 µg/L and 1,000 µg/L in

small streams, mainstem blackwater stations (NCF117, NCF6, B210) and mainstem Cape Fear River stations, respectively, are considered harmful to water quality. These nutrient levels may lead to algal blooms, high bacteria levels and high biochemical oxygen demand (BOD) in blackwater streams (Mallin et al., 2001; 2002; 2004). Water quality status for nutrient species at the mainstem Cape Fear River stations was evaluated with a higher standard for nutrients because its waters are quite different than the blackwater areas and are able to better assimilate higher nutrient levels.

Our system lists a sampling location as having good quality (G) if the standard is exceeded in none or 1 sample out of 12 measurements (<10%), fair quality (F) if standard is exceeded in 2 or 3 or 12 of measurements (11-25%), or poor quality (P) if standard is exceeded in 4-12 out of 12 measurements (>25%).

The 36 stations monitored by the LCFRP by subbasin:

Subbasin #	LCFRP Stations
03-06-16	BRN, HAM, NC11
03-06-17	LVC2, AC, DP, IC, NAV, HB, BRR, M61, M54, M42, M35, M23, M18, SPD
03-06-18	SR
03-06-19	6RC, LCO, GCO
03-06-20	COL, B210, BBT
03-06-21	N403
03-06-22	SAR, GS, PB, LRC, ROC
03-06-23	ANC, BC117, BCRR, NCF6, NCF117, SC-CH

Each subbasin is addressed separately with a description and map showing the LCFRP stations. This will be followed by a summary of the information published in the October 2005 Cape Fear River Basinwide Water Quality Plan and water quality status discussion using the UNCW-AEL approach for the 2008 LCFRP data.

3.3 Cape Fear River Subbasin 03-06-16

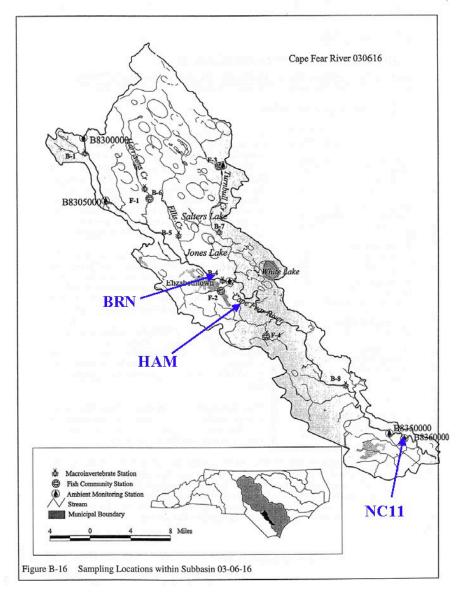
Location: Cape Fear River upstream and downstream of Elizabethtown

Counties: Bladen, Columbus, Cumberland, Pender

Water bodies: Cape Fear River

Municipalities: Elizabethtown, Dublin, White Lake, East Arcadia, Tar Heel

NPDES Dischargers: 7 @ 13.7 million gallons per day


Concentrated Swine Operations: 50

LCFRP monitoring stations (DWQ #):

BRN (B8340050), HAM (B8340200), NC11 (B8360000)

NC DWQ monitoring stations (DWQ #):

Six ambient monitoring stations Subbasin 03-06-16 includes the Cape Fear River and many streams that drain coastal plain wetlands and bay lakes. Most of the watershed is forested with some agriculture present.

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Supporting	101.5 freshwater miles	Supporting	115.1 freshwater miles
Not Rated	40.1 freshwater miles	Not Rated	4.8 freshwater miles
Not Rated	1,593.2 freshwater acres	No Data	153.1 freshwater miles
No Data	131.4 freshwater miles	No Data	2,510.8 freshwater acres
No Data	917.6 freshwater acres		

^{*}Brown's Creek, rated as impaired in the 2000 CFRBWQP, was upgraded in the 2005 plan (NCDENR DWQ CFRWQBP, July 2000 and NCDENR DWQ CFRWQBP, October 2005).

UNCW Aquatic Ecology Laboratory Evaluation

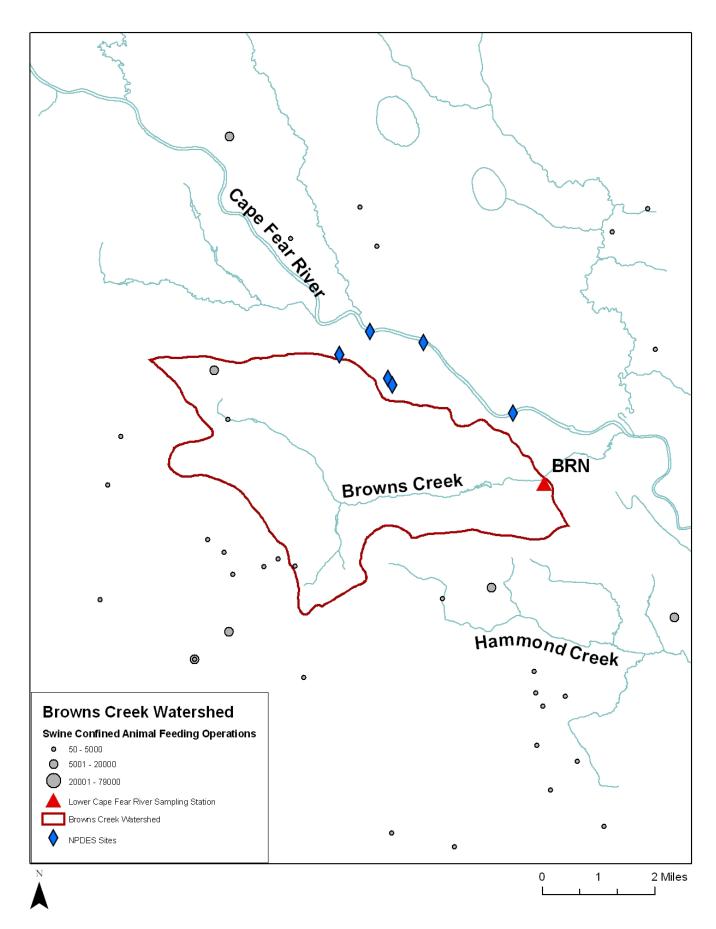
Data collection: NC11 since June 1995, BRN & HAM since February 1996 **Sampling relevance:** Represents water entering the Lower Cape Fear River watershed from the middle basin (NC11). There are also concentrated animal operations within the area (BRN and HAM).

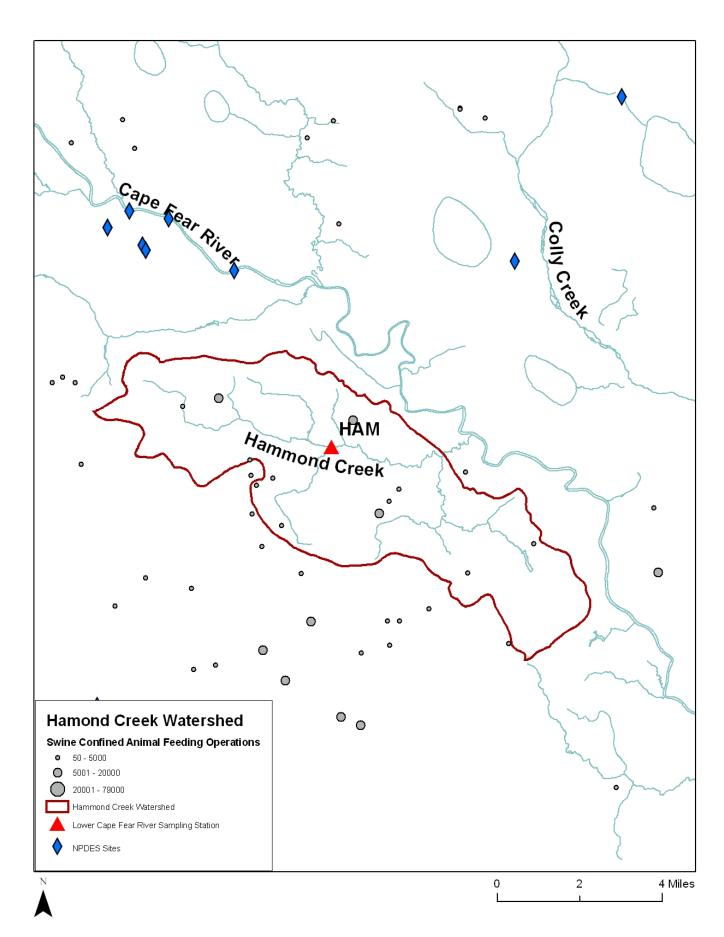
BRN - representative of small tributaries

NC11 – Main stem of the Cape Fear River deep channel, freshwater with minor tidal influence

Dissolved Oxygen ratings for BRN and NC11 were both good. At HAM the rating was fair, with values exceeding the NC State standard 25% of the time (Table 3.3.1).

All sites within this subbasin had a good rating for chlorophyll a concentrations (Table


3.3.1). The North Carolina State standard for chlorophyll a of 40 μ g/L was not exceeded at any station during 2008. Of note is that chlorophyll a concentrations at all three stations was greater than 30 μ g/L during August.


For fecal coliform bacteria concentrations NC11 had a fair rating with concentrations exceeding the NC State Standard in 17% of twelve samples (Table 3.3.1). BRN and HAM received a poor rating exceeding the standard 58% and 50% of the time, respectively.

For field turbidity, all stations were rated good (Table 3.3.1). The NC State Standard of 50 NTU was exceeded once at NC11 in December.

For nitrate, BRN rated as poor (above standard 42% of the time) and HAM rated as fair (above the standard 25% of the time). A good rating was found at NC11 for both nutrient species and for total phosphorus at BRN and HAM.

Table 3.3.1 UNCW AEL 2008 evaluation for subbasin 03-06-16						
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus
BRN	G	G	Р	G	Р	G
НАМ	F	G	Р	G	F	G
NC11	G	G	F	G	G	G

3.4 Cape Fear River Subbasin 03-06-17

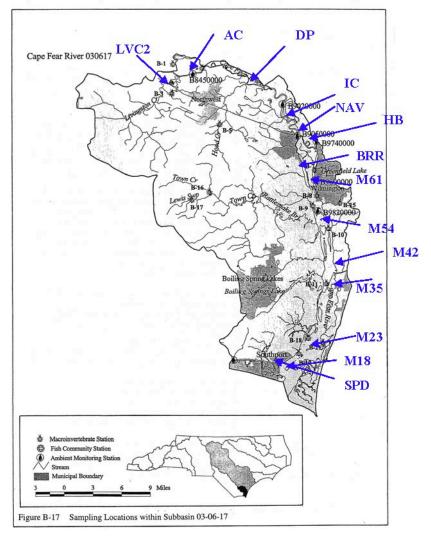
Location: Cape Fear River near Riegelwood, downstream to estuarine area

near Southport

Counties: Columbus, Pender, Brunswick, New Hanover

Waterbodies: Cape Fear River and Estuary **Municipalities:** Wilmington, Southport

NPDES Dischargers: 41 @ 99.9 million gallons per day


Concentrated Swine Operations: 7

LCFRP monitoring stations (DWQ #):

LVC2 (B8445000), AC (B8450000), DP (B8460000), IC (B9030000), NAV (B9050000), HB (B9050100), BRR (B9790000), M61 (B9750000), M54 (B9795000), M42 (B9845100), M35 (B9850100), M23 (B9910000), M18 (B9921000), SPD (B9980000)

DWQ monitoring stations:

NAV (B9050000), M61 (B9750000), M54(B9795000)

Subbason 03-06-17 includes the mainstem of the Cape Fear River, the Cape Fear River Estuary and many streams that drain the areas west of the River. Most of the watershed is forested with some urban areas including Wilmington and Southport.

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

	Recreation	
14,125.4 saltwater acres	Supporting	21,092.3 saltwater acres
2.0 saltwater acres	Impaired	96.6 saltwater acres
6,457.0 saltwater acres	Supporting	44.1 freshwater miles
75.4 freshwater miles	Not Rated	5.6 coast miles
22.3 freshwater miles	Impaired	4.7 coast miles
406.9 freshwater acres	No Data	2,254.6 saltwater acres
2,859.2 saltwater acres	No Data	269.1 freshwater miles
215.4 freshwater miles	No Data	1,251.5 freshwater acres
844.5 freshwater acres	No Data	12.5 coast miles
22.8 coast miles		
	2.0 saltwater acres 6,457.0 saltwater acres 75.4 freshwater miles 22.3 freshwater miles 406.9 freshwater acres 2,859.2 saltwater acres 215.4 freshwater miles 844.5 freshwater acres	14,125.4 saltwater acres 2.0 saltwater acres 6,457.0 saltwater acres 75.4 freshwater miles 22.3 freshwater miles 406.9 freshwater acres 2,859.2 saltwater acres 215.4 freshwater miles No Data No Data No Data No Data No Data

UNCW Aquatic Ecology Laboratory Evaluation

Data collection: Most stations since 1995, all sampled since 1998 **Sampling relevance:** Highly important estuary for fisheries productivity. Also receives point source discharge and non-point source pollution.

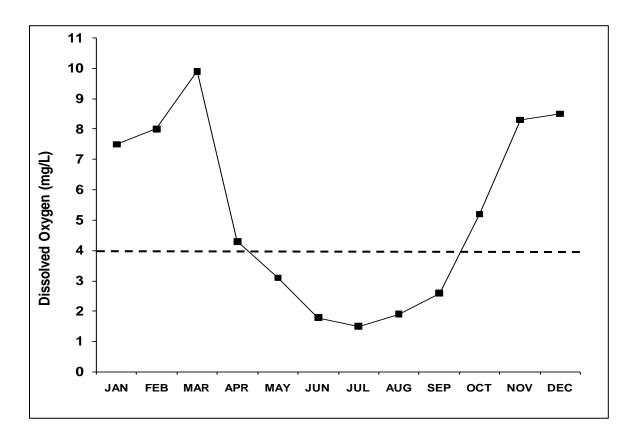
AC – representative of riverine system channel

HB- upper estuary, upstream of Wilmington

M35 – represents wide estuary

Sites given a good rating for dissolved oxygen include AC, DP, IC, M54, M42, M35, M23, M18 and SPD (Table 3.4.1). Sites having a fair rating for dissolved oxygen, with the percentage of samples not meeting the standard shown in parentheses, are NAV (17%), HB (25%), BRR (25%), and M61 (25%). LVC2 was rated poor with samples below the standard 42% of the time.

All sites within this subbasin had a good rating in terms of chlorophyll *a* concentrations (Table 3.4.1). None of the sampled locations exceeded the 40 μ g/L North Carolina State standard on any sample occasion during 2008, although there were several that were at or near 40 μ g/L in the middle estuary during the summer.


All but two sites within this subbasin had a good rating for fecal coliform bacteria concentrations (Table 3.4.1). LVC2 and AC each had two samples (17%) exceed the 200 cfu/100mL North Carolina State human contact standard during 2008.

All the LCFRP sites in this subbasin had a good rating for field turbidity. The station NAV and those upstream were evaluated using the NC State Standard for freshwater of 50 NTU while all stations downstream of NAV were evaluated with the NC State Standard for brackish waters of 25 NTU.

AC and IC were both rated fair for nitrate, exceeding the recommended UNCW-AEL standard 17% of the time (Table 3.4.1) LVC2 was rated poor for nitrate, exceeding the UNCW-AEL recommended standard (200 mg/L) 75% of the time. All stations rated good for total phosphorus.

Table 3.4.1 UNCW AEL 2008 evaluation for subbasin 03-06-17						
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus
LVC2	Р	G	F	G	Р	G
AC	G	G	F	G	F	G
DP	G	G	G	G	G	G
IC	G	G	G	G	F	G
NAV	F	G	G	G	G	G
НВ	F	G	G	G	G	G
BRR	F	G	G	G	G	G
M61	F	G	G	G	G	G
M54	G	G	G	G	G	G
M42	G	G	G	G	G	G
M35	G	G	G	G	G	G
M23	G	G	G	G	G	G
M18	G	G	G	G	G	G
SPD	G	G	G	G	G	G

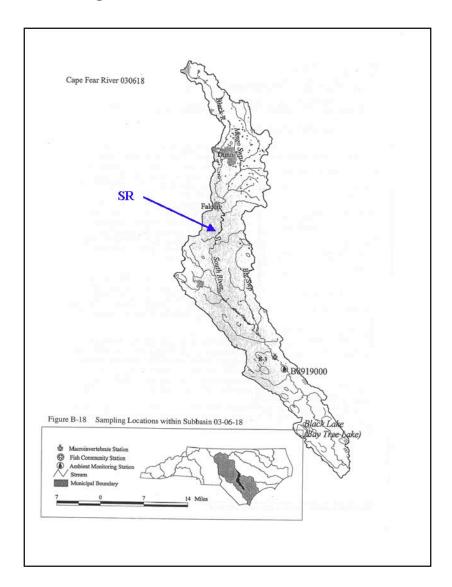
Figure 3.4.1 Dissolved oxygen concentrations at LVC2, rated poor for 2008. The dashed line shows the NC State Standard for swampwater, 4.0 mg/L.

3.5 Cape Fear River Subbasin 03-06-18

Location: South River headwaters above Dunn down to Black River

Counties: Bladen, Cumberland, Harnett, Johnston, Sampson

Waterbodies: South River, Mingo Swamp


Municipalities: Dunn, Roseboro

NPDES Dischargers: 2 @ 0.08 million gallons per day

Concentrated Swine Operations: 105

LCFRP monitoring stations (DWQ #): SR (B8470000) DWQ

monitoring stations: none

This subbasin is located on the inner coastal plain and includes the South River which converges with the Great Coharie Creek to form the Black River, a major tributary of the Cape Fear River. Land use is primarily agriculture including row crops and concentrated animal operations.

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Not Rated	52.1 freshwater miles	Supporting	52.1 freshwater miles
Not Rated	1,454.2 freshwater acres	No Data	242.5 freshwater miles
No Data	242.5 freshwater miles	No Data	1,454.2 freshwater acres

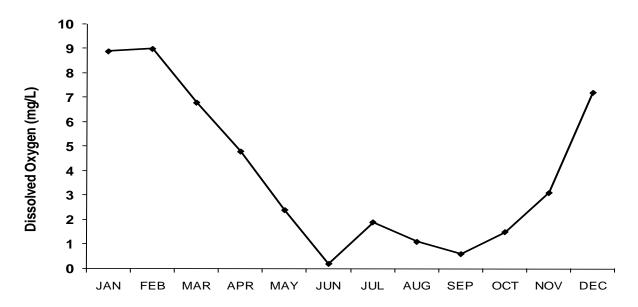
UNCW Aquatic Ecology Laboratory Evaluation

Data collection: Since February 1996

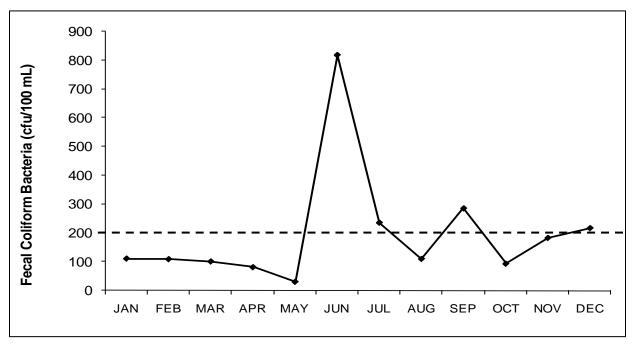
Sampling relevance: Below City of Dunn, hog operations in watershed

SR – a slow black water tributary

SR was found to have a poor rating for dissolved oxygen concentrations in 2008 (Table 3.5.1). The North Carolina State Standard for swampwater of 4.0 mg/L was not met 33% of the time. The lowest levels were found in summer and late fall (Figure 3.5.1).


SR had a good rating for chlorophyll *a* exceeding the NC State standard of 40 μ g/L on one occasion (Table 3.5.1, Figure 3.5.1).

SR had a poor water quality status for fecal coliform bacteria concentrations, exceeding the NC State Standard of 200 CFU/100mL in 33% of samples (Table 3.5.1). The highest concentration was in June (819 CFU/100mL).


SR had a good rating for field turbidity, nitrate and total phosphorus (Table 3.5.1).

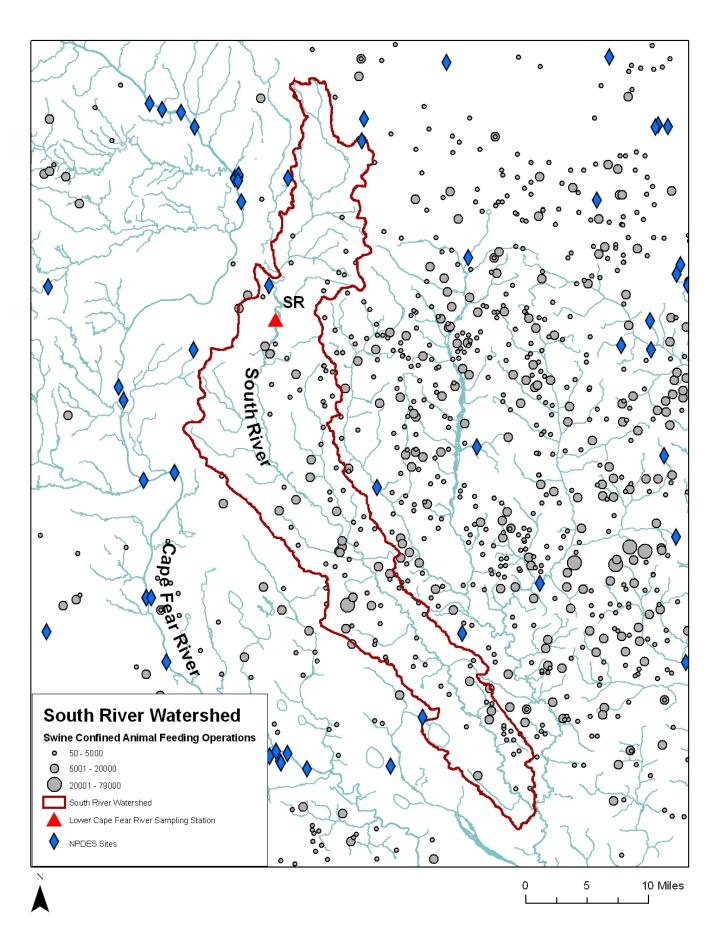

Table 3.5.1 UNCW AEL 2008 evaluation for subbasin 03-06-18							
Station	Station Dissolved Chlorophyll Fecal Field Nitrate Total Oxygen a Coliform Turbidity Phosphorus						
SR	Р	G	Р	G	G	G	

Figure 3.5.1 Dissolved oxygen (mg/L) at SR during 2008. The dashed line shows the NC State Standard for swampwater DO of 4.0 mg/L.

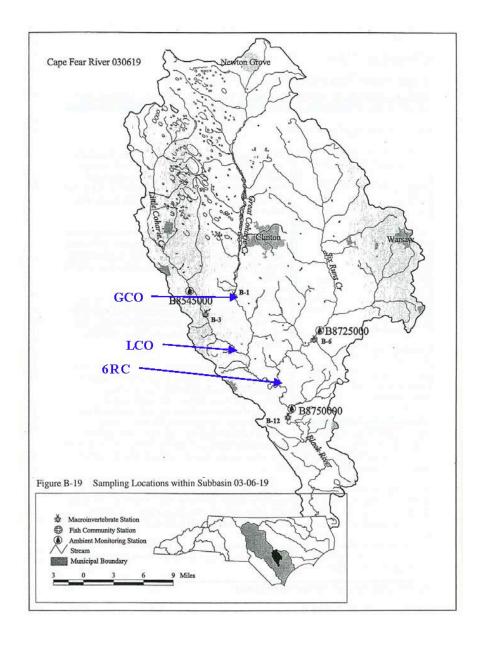
Figure 3.5.2 Fecal Coliform Bacteria (cfu/100 mL) at SR during 2008. The dashed line shows the NC State Standard of 200 cfu/100 mL.

3.6 Cape Fear River Subbasin 03-06-19

Location: Three main tributaries of Black River near Clinton

Counties: Sampson

Waterbodies: Black River, Six Runs Ck., Great Coharie Ck., Little Coharie Ck.


Municipalities: Clinton, Newton Grove, Warsaw NPDES Dischargers: 8 @ 6.8 million gallons per day

Concentrated Swine Operations: 374

LCFRP monitoring stations (DWQ #):

LCO (B8610001), GCO (B8604000), 6RC (B8740000)

DWQ monitoring stations: none

This subbasin is located in the coastal plain within Sampson County. Land adjacent to the Black River is primarily undisturbed forest. There are numerous concentrated swine operations within this subbasin.

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Supporting	71.3 freshwater miles	Supporting	153.0 freshwater miles
Not Rated	99.7 freshwater miles	Not Rated	8.8 freshwater miles
No Data	338.4 freshwater miles	No Data	347.6 freshwater miles

UNCW Aquatic Ecology Laboratory Evaluation

Data collection: February 1996 to present

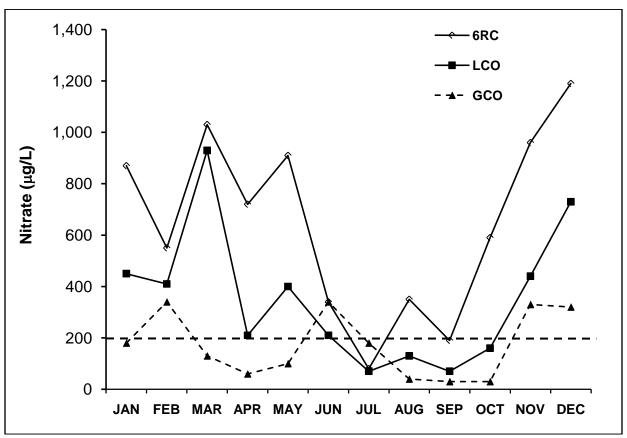
Sampling relevance: Many concentrated animal operations (CAOs) within the

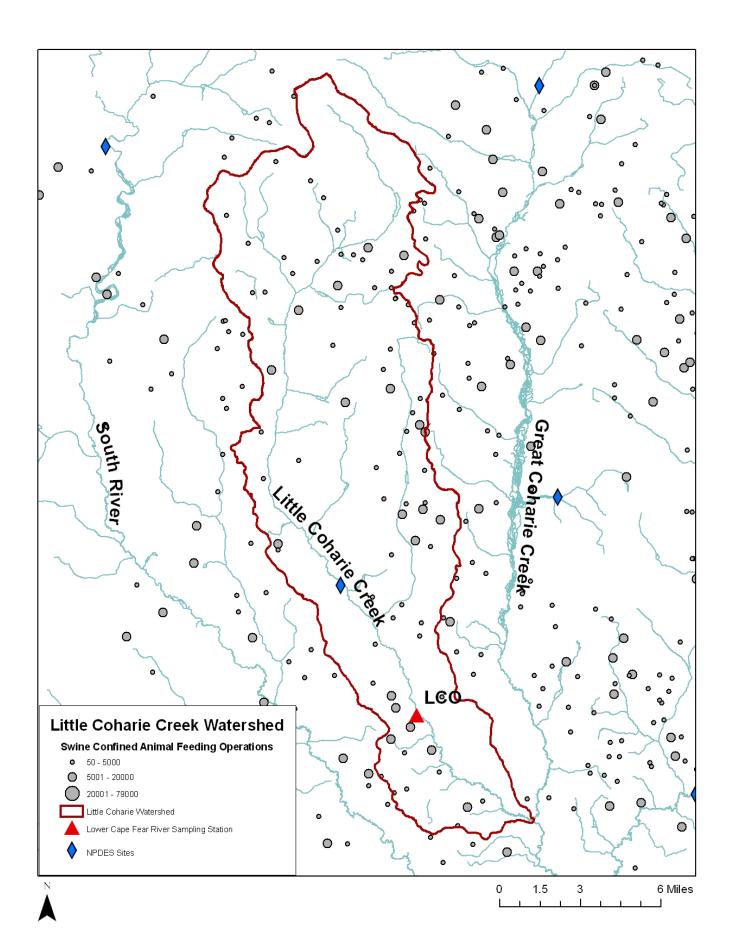
watershed, reference areas for point and nonpoint source pollution

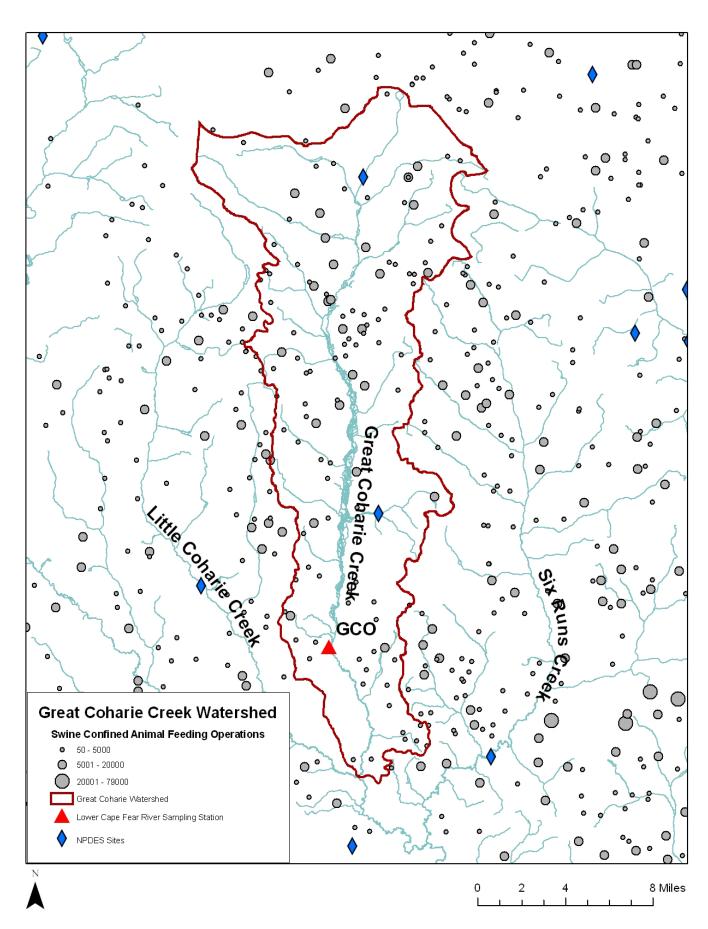
GCO - blackwater stream, drains riparian wetlands

6RC and LCO had a good rating for dissolved oxygen concentrations during 2008 (Table 3.6.1). GCO was rated fair with two samples (17%) below the NC State Standard of 4.0 mg/L.

All sites within this subbasin had a good rating for chlorophyll *a* and field turbidity concentrations (Table 3.6.1).


6RC had a poor rating for fecal coliform bacteria with 50% of samples exceeding the NC State human contact standard of 200 CFU/100mL (Table 3.6.1). LCO had a fair rating with a 17% rate and GCO had a good rating for fecal coliform bacteria.


Nitrate levels were rated poor at 6RC, LCO and GCO, exceeding 200 μ g/L in 83%, 67%, and 33% of the samples, respectively (Table 3.6.1, Figure 3.6.1).


Total phosphorus was rated good at 6RC and LCO and rated fair at GCO with levels above 500 μ g/L 25% of the time (Table 3.6.1).

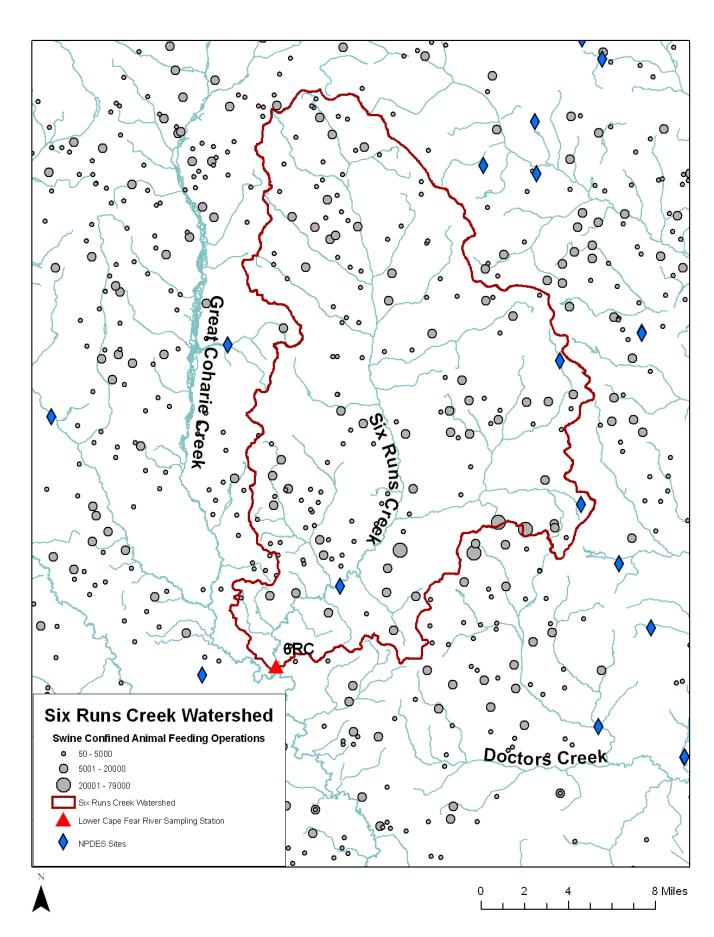
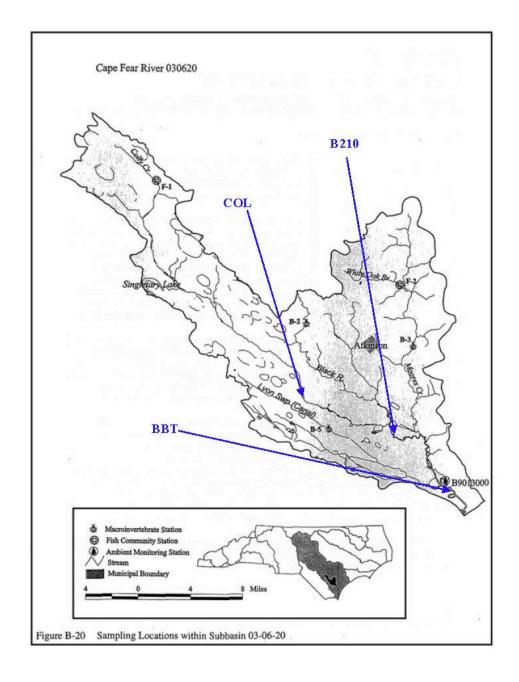

Table 3.6.1	Table 3.6.1 UNCW AEL 2008 evaluation for subbasin 03-06-19						
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus	
6RC	G	G	Р	G	Р	G	
LCO	G	G	F	G	Р	G	
GCO	F	G	G	G	Р	F	

Figure 3.6.1 Nitrate concentrations (μ g/L) at 6RC, LCO, and GCO during 2008. The dashed line shows the UNCW-AEL standard of 200 μ g/L.

3.7 Cape Fear River Subbasin 03-06-20

Location: Lower reach of Black River


Counties: Pender

Waterbodies: Black River, Colly Creek, Moores Creek Municipalities: Town of White Lake, Currie, Atkinson NPDES Dischargers: 2 at 0.82 million gallons per day

Concentrated Swine Operations: 18 LCFRP monitoring stations (DWQ #):

COL (B8981000), B210 (B9000000), BBT (none)

DWQ monitoring stations: none

This subbasin is located on the coastal plain in Pender County and the land is mostly forested with some agriculture. The streams in this watershed typically have acidic black waters. The Black River in this area has been classified as Outstanding Resource Waters (ORW) (NCDENR DWQ Cape Fear River Basinwide Water Quality Plan, October 2005).

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Supporting	13.0 freshwater miles	Supporting	34.9 freshwater miles
Not Rated	77.9 freshwater miles	No Data	199.8 freshwater miles
Not Rated	576.0 freshwater acres	No Data	576.0 freshwater miles
No Data	143.8 freshwater acres		

UNCW Aquatic Ecology Laboratory Evaluation

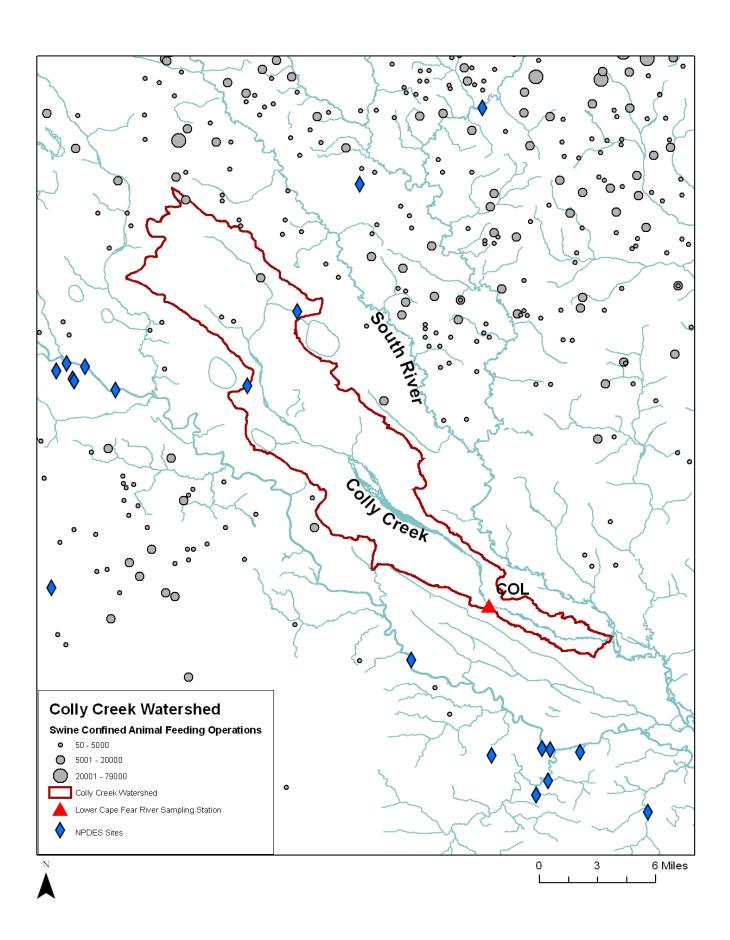

Data collection: February 1996 to present

Sampling relevance: Colly Creek is a pristine swamp reference site, B210 and

BBT are middle and lower Black River sites

COL – blackwater stream, drains swamp area, very low pH

B210- Black River at Hwy 210 bridge


All three sites had a good rating for dissolved oxygen when using the NC State swampwater standard of 4.0 mg/L (Table 3.7.1).

Chlorophyll *a* and field turbidity concentrations were low for each site within this subbasin and all sites had a good rating for these parameters (Table 3.7.1).

Fecal coliform bacteria concentrations were generally low with B210 and COL rating as fair with samples exceeding the NC State standard 17% and 18% of the time respectively (Table 3.7.1). BBT samples were not analyzed for fecal coliform bacteria.

All stations rated good for both nutrient species. BBT samples were not analyzed for nutrients.

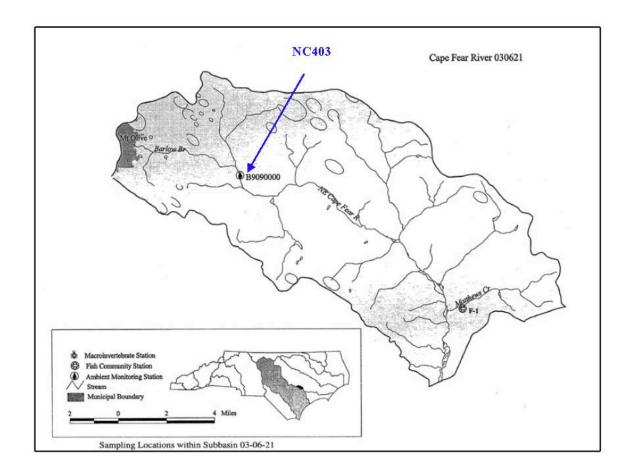
Table 3.7.1 UNCW AEL 2008 evaluation for subbasin 03-06-20						
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus
B210	G	G	F	G	G	G
COL	G	G	F	G	G	G
BBT	G	G		G		

3.8 Cape Fear River Subbasin 03-06-21

Location: Headwaters of NE Cape Fear River below Mount Olive

Counties: Duplin, Wayne

Waterbodies: Northeast Cape Fear River


Municipalities: Mount Olive

NPDES Dischargers: 6 @ 1.4 million gallons per day

Concentrated Swine Operations: 75

LCFRP monitoring stations (DWQ#): NC403 (B9090000) DWQ monitoring

stations: NC403

This subbasin includes the headwaters of the Northeast Cape Fear River and small tributaries. This section of the NE Cape Fear River is very slow moving and somewhat congested with macrophytic growth. Most of the watershed is forested and there is significant agriculture in the basin.

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Supporting	21.7 freshwater miles	Supporting	57.3 freshwater miles
Not Rated	38.9 freshwater miles	No Data	88.1 freshwater miles
No Data	84.7 freshwater miles		

UNCW Aquatic Ecology Laboratory Evaluation

Data collection: June 1997 – present

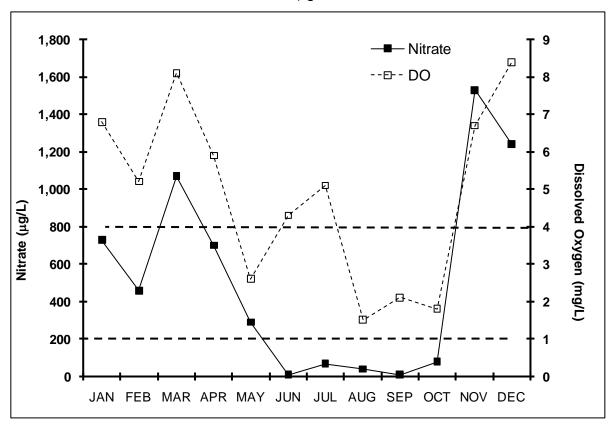
Sampling relevance: Below Mount Olive Pickle Plant

NC403 - slow moving headwaters of NE Cape Fear River

NC403 had a poor rating for dissolved oxygen concentrations, not meeting the NC State Standard for swampwater of 4.0 mg/L in 33% of the samples (Table 3.8.1, Figure 3.8.1)

NC403 had a fair rating for chlorophyll *a* and had very high aquatic macrophyte biomass present, often times completely covering and blocking the waterway (Table 3.8.1). As we have noticed at several of our stations over the years, chlorophyll *a*, a measurement of phytoplankton biomass, often used as an indicator of eutrophic conditions, is not always adequate to determine problematic conditions with regard to aquatic flora.

Field turbidity was rated as good at NC 403 (Table 3.8.1).


NC403 had a poor rating for fecal coliform bacteria with samples exceeding the NC State standard for human contact (200 cfu/100 mL) 33% of the time.

High nitrate levels at NC403 led to a poor rating, with nitrate concentrations >200 μ g/L for 50% of the samples (Table 3.8.1, Figure 3.8.1). UNCW AEL researchers are concerned

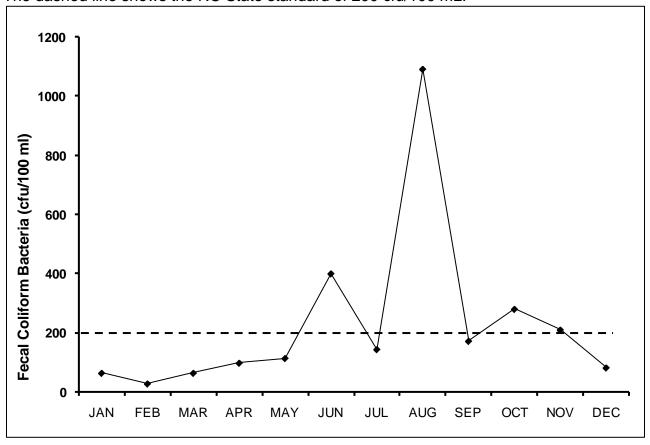

about the elevated nitrate levels that are periodically found at this site since these levels increase the likelihood of algal blooms and excessive aquatic macrophyte growth. Total phosphorus had a good rating at this location for 2008.

Table 3.8.1 UNCW AEL 2008 evaluation for subbasin 03-06-21							
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus	
NC403	Р	F	Р	G	Р	G	

Figure 3.8.1 Dissolved oxygen (mg/L) and nitrate (μ g/L) concentrations at NC403 during 2008. The dashed lines show the NC State DO standard of 4.0 mg/L for swampwater and the UNCW AEL standard for Nitrate of 200 μ g/L.

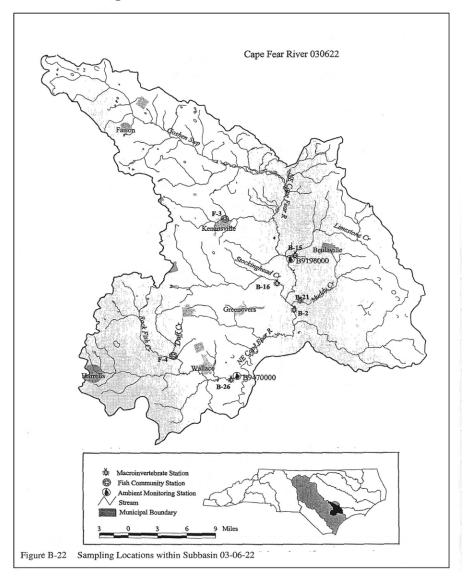
Figure 3.9.1 Fecal Coliform Bacteria concentrations (cfu/100 mL) at NC403 during 2008. The dashed line shows the NC State standard of 200 cfu/100 mL.

3.9 Cape Fear River Subbasin 03-06-22

Location: NE Cape Fear River and tributaries in the vicinity of Kenansville

Counties: Duplin

Waterbodies: Northeast Cape Fear River, Rockfish Creek **Municipalities:** Beulaville, Kenansville, Rose Hill and Wallace


NPDES Dischargers: 13 @ 9.9 million gallons per day

Concentrated Swine Operations: 449

LCFRP monitoring stations (DWQ #):

PB (B9130000), GS (B9191000), SAR (B9191500), LRC (9460000) ROC (B9430000)

DWQ monitoring stations: none

Land coverage in this watershed is mostly forested with significant agriculture including row crops and a dense concentration of animal operations (poultry and swine).

The CFR Basinwide Water Quality Plans lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Supporting	51.1 freshwater miles	Supporting	73.2 freshwater miles
Not Rated	72.1 freshwater miles	Not Rated	3.0 freshwater miles
Impaired	50.1 freshwater miles	No Data	505.9 freshwater miles
No Data	408.8 freshwater miles		

UNCW Aquatic Ecology Laboratory Evaluation

Data collection: February 1996 to present

Sampling relevance: Below point and non-point source discharges

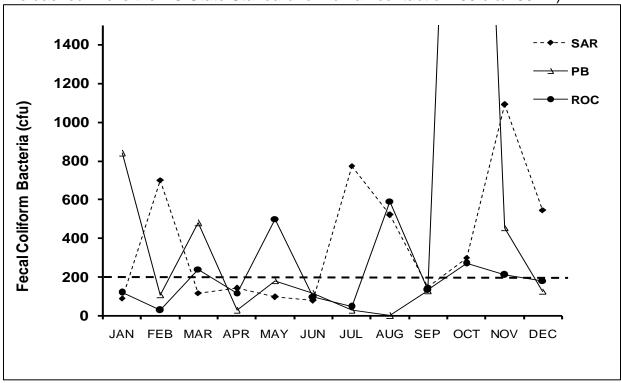
PB – slow moving swamp-like stream

ROC - Rockfish Creek below Wallace

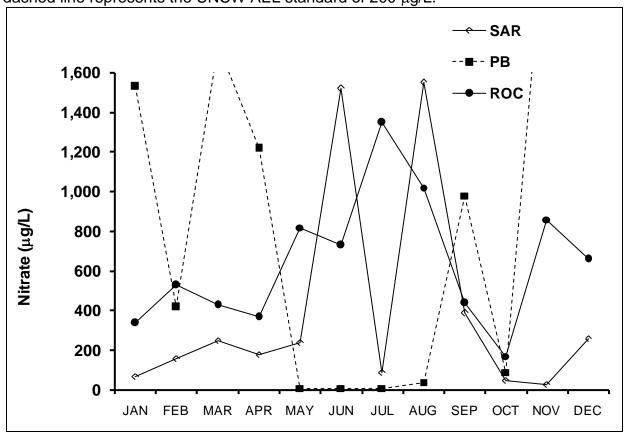
All sites in this subbasin were rated using the dissolved oxygen NC State swampwater standard of 4.0 mg/L. SAR, PB, LRC and ROC all had a good rating (Table 3.9.1). GS had a poor rating with DO values dropping below the standard 25% of the time.

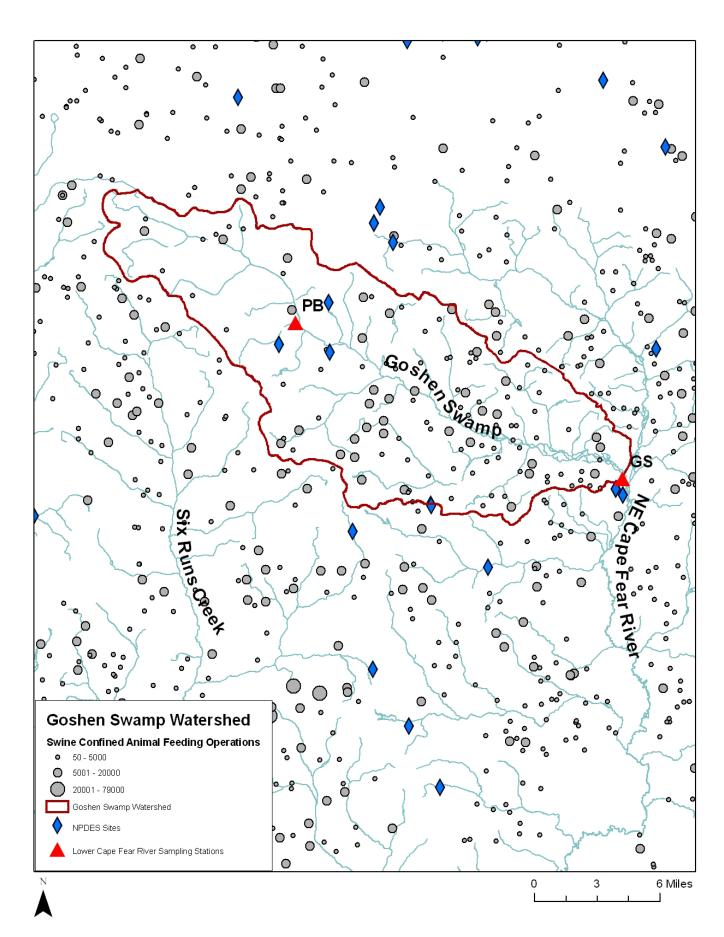
For chlorophyll a concentrations SAR, LRC and ROC had a good rating (Table 3.9.1). GS was rated fair with samples exceeding the NC State Standard 17% of the time. PB was rated poor, exceeding the standard 33% of the time.

Fecal coliform bacteria concentrations were rated using the NC State standard of 200 CFU/100 mL for human contact. GS and LRC each had a fair rating with both exceeding the standard 25% of the time (Table 3.9.1). SAR, PB and ROC each had a poor rating with 50%, 42% and 42% of samples above the standard, respectively. Fecal coliform bacteria concentrations are shown graphically in Figure 3.9.1.


All sites had a good rating for field turbidity concentrations (Table 3.9.1). Mean levels were less than 15 NTU for all sites within this subbasin for 2008.

For nitrate GS and LRC had a good rating (Table 3.9.1). SAR, PB, and ROC all had a poor rating with levels exceeding the UNCW AEL standard (200 μ g/L) 50%, 58%, 33% and 92% of the time, respectively. Nitrate levels for SAR, PB and ROC are shown graphically in Figure 3.9.2.


For total phosphorus all stations were rated good (Table 3.9.1).


Table 3.9.1	Table 3.9.1 UNCW AEL 2008 evaluation for subbasin 03-06-22						
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus	
SAR	G	G	Р	G	Р	G	
GS	F	F	F	G	G	G	
PB	G	Р	Р	G	Р	G	
LRC	G	G	F	G	G	G	
ROC	G	G	Р	G	Р	G	

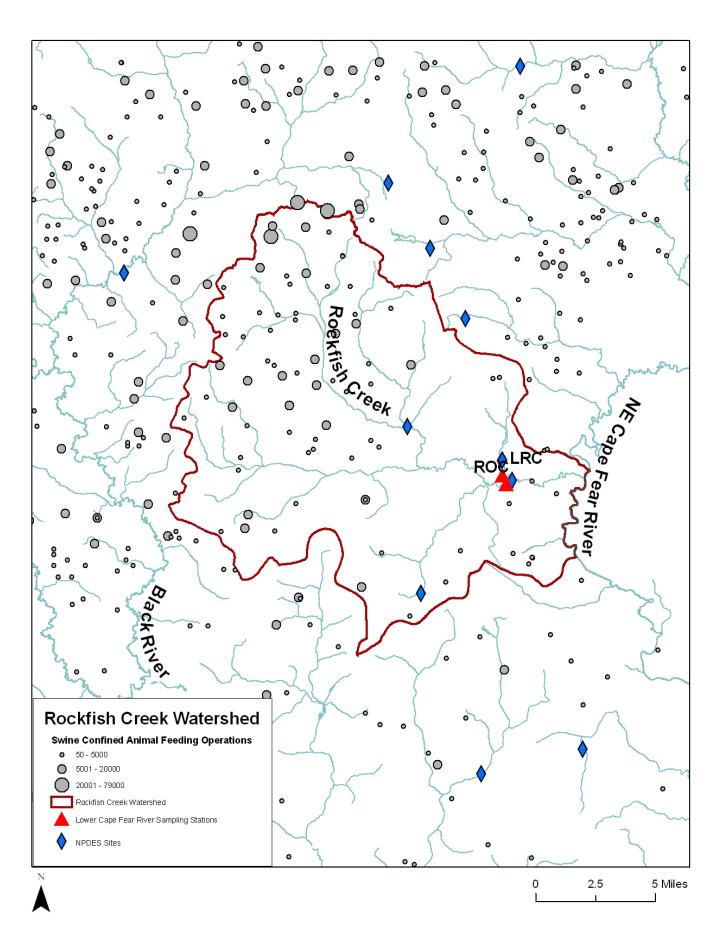

Figure 3.9.1 Fecal coliform bacteria at SAR, PB and ROC (cfu/100mL) during 2008. The dashed line is the NC State Standard for human contact of 200 cfu/100mL).

Figure 3.9.2 Nitrate-N concentrations (μ g/L) at SAR, PB and ROC during 2008. The dashed line represents the UNCW AEL standard of 200 μ g/L.

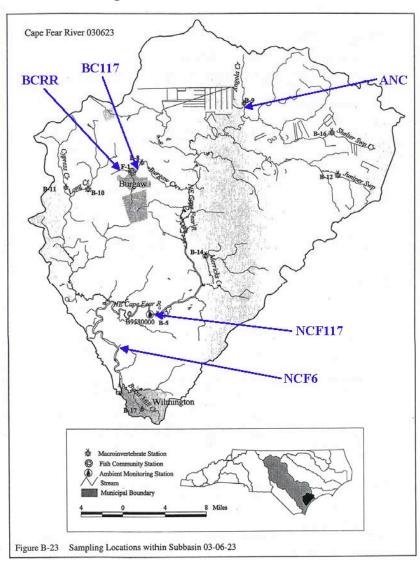
3.10 Cape Fear River Subbasin 03-06-23

Location: Area near Burgaw and Angola swamp

Counties: Pender

Waterbodies: Northeast Cape Fear River, Burgaw Creek

Municipalities: Burgaw


NPDES Dischargers: 7 @ 3.8 million gallons per day

Concentrated Swine Operations: 52

LCFRP monitoring stations (DWQ #):

ANC (69), BCRR (82), BC117 (83), NCF117 (84), NCF6 (85)

DWQ monitoring stations: NCF117

This subbasin is located in the outer coastal plain where many streams are slow flowing blackwater streams that often dry up during the summer months. Most of the watershed is

forested with some agriculture and increasing human development.

The CFR Basinwide Water Quality Plan lists the following ratings for this subbasin:

Aquatic Life		Recreation	
Supporting	73.8 freshwater miles	Supporting	39.5 freshwater miles
Not Rated	45.1 freshwater miles	Supporting	1.0 saltwater acre
Impaired	23.4 freshwater miles	Not Rated	11.6 freshwater miles
No Data	233.2 freshwater miles	Not Data	324.5 freshwater miles
Not Rated	1.0 saltwater acre		

UNCW Aquatic Ecology Laboratory Evaluation

Data collection: NCF117 & NCF6 since June 1995, others from February 1996 **Sampling relevance:** point and non-point source dischargers

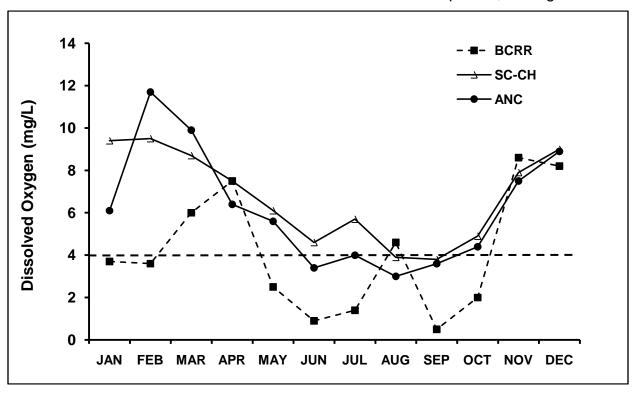
ANC - Angola Creek

BC117 - Burgaw Canal at US 117

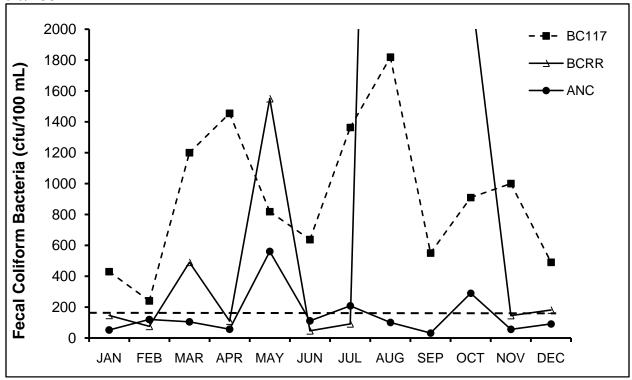
NCF117 - Northeast Cape Fear River at US117

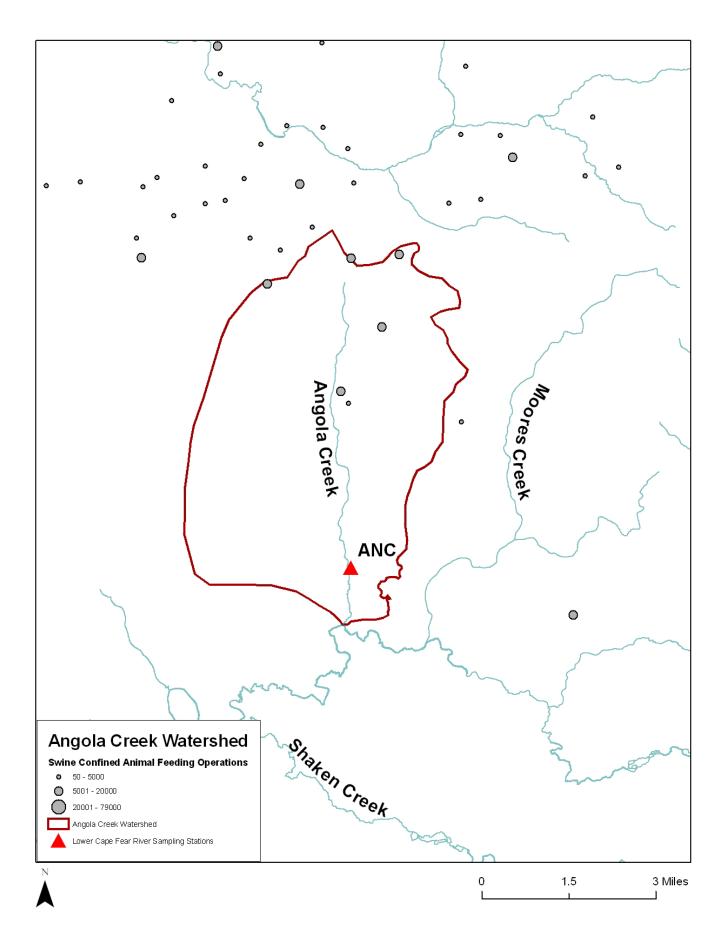
For dissolved oxygen BC117, NCF117 and NCF6 had a good rating when using the 4.0 mg/L standard (Table 3.10.1). ANC had a fair rating with sub-standard samples 25% of the time. SC-CH and BCRR had a poor rating with substandard samples 33% and 58% of the time. DO levels for ANC, BCRR and SC-CH are seen in Figure 3.10.1.

For chlorophyll *a* BC117, NCF117 and NCF6 rated good (Table 3.10.1). ANC and BCRR rated fair exceeding the NC State Standard of 40 µg/L 17% of the time at both sites. Chlorophyll *a* was not analyzed at SC-CH.


For fecal coliform bacteria NCF117, NCF6 and SC-CH had a good rating (Table 3.10.1). ANC had a fair rating, exceeding the standard 25% of the time. BC117 and BCRR each had a poor rating exceeding the human contact standard 100% and 42% of the time, respectively. Fecal coliform bacteria concentrations for BC117 and BCRR are shown in Figure 3.10.2.

All stations were rated good for field turbidity except SC-CH which had field turbidity values exceeding the NC State Standard for tidal waters of 25 NTU 33% of the time. (Table 3.10.1).


Nutrient loading of nitrate and total phosphorus was problematic at BC117 which had a poor rating for both (Table 3.10.1). Nitrate levels exceeded the UNCW AEL standard 100% of the time and total phosphorus levels exceeded the UNCW AEL standard 75% of the time. BC117 had the highest nitrate and TP levels seen in the LCFRP system. These levels were far above the concentrations known to lead to algal bloom formation, bacterial increases and increased biochemical oxygen demand (BOD) in blackwater streams (Mallin et al. 2001, Mallin et al. 2002). ANC and BC117 were both rated poor for nitrate as well, exceeding the UNCW AEL standard 33% and 42% of the time, respectively.


Table 3.10.1 UNCW AEL 2008 evaluation for subbasin 03-06-23						
Station	Dissolved Oxygen	Chlorophyll a	Fecal Coliform	Field Turbidity	Nitrate	Total Phosphorus
ANC	F	F	F	G	Р	G
BC117	G	G	Р	G	Р	Р
BCRR	Р	F	Р	G	Р	G
NCF117	G	G	G	G	G	G
NCF6	G	G	G	G	G	G
SC-CH	Р		G	Р		

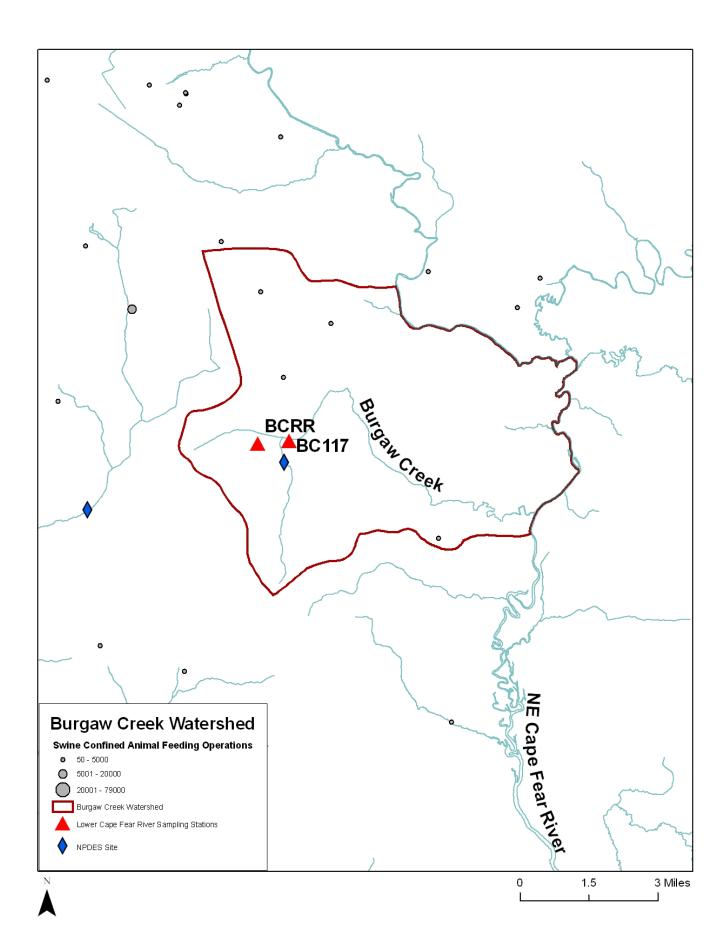

Figure 3.10.1 Dissolved oxygen concentrations (mg/L) at BCRR, SC-CH and ANC for 2008. The dashed line shows the NC State Standard for swampwater, 4.0 mg/L.

Figure 3.10.2 Fecal coliform bacteria concentrations (cfu/100mL) at BC117, BCRR and ANC during 2008. The dashed line shows the NC State Standard for human contact, 200 cfu/100 mL.

3.11 References Cited

- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 2001. Effect of nitrogen and phosphorus loading on plankton in Coastal Plain blackwater streams. *Journal of Freshwater Ecology* 16:455-466.
- Mallin, M.A., L.B. Cahoon, M.R. McIver and S.H. Ensign. 2002. Seeking science-based nutrient standards for coastal blackwater stream systems. Report No. 341. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M. A., M.R. McIver, S.H. Ensign and L.B. Cahoon. 2004. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. *Ecological Applications*14: 823-838.
- NCDENR-DWQ (North Carolina Department of Environment and Natural Resources-Division of Water Quality), Cape Fear River Basinwide Water Quality Plan. July 2000, Raleigh, N.C.
- NCDENR-DWQ (North Carolina Department of Environment and Natural Resources-Division of Water Quality), Cape Fear River Basinwide Water Quality Plan. October 2005, Raleigh, N.C.