
Environmental Assessment of the Lower Cape Fear River System, 2014

Ву

Michael A. Mallin, Matthew R. McIver and James F. Merritt November 2015

CMS Report No. 15-02
Center for Marine Science
University of North Carolina Wilmington
Wilmington, N.C. 28409

Executive Summary

Multiparameter water sampling for the Lower Cape Fear River Program (LCFRP) http://www.uncw.edu/cms/aelab/LCFRP/index.htm, has been ongoing since June 1995. Scientists from the University of North Carolina Wilmington's (UNCW) Aquatic Ecology Laboratory perform the sampling effort. The LCFRP currently encompasses 33 water sampling stations throughout the lower Cape Fear, Black, and Northeast Cape Fear River watersheds. The LCFRP sampling program includes physical, chemical, and biological water quality measurements and analyses of the benthic and epibenthic macroinvertebrate communities, and has in the past included assessment of the fish communities. Principal conclusions of the UNCW researchers conducting these analyses are presented below, with emphasis on water quality of the period January - December 2014. The opinions expressed are those of UNCW scientists and do not necessarily reflect viewpoints of individual contributors to the Lower Cape Fear River Program.

The mainstem lower Cape Fear River is a 6th order stream characterized by periodically turbid water containing moderate to high levels of inorganic nutrients. It is fed by two large 5th order blackwater rivers (the Black and Northeast Cape Fear Rivers) that have low levels of turbidity, but highly colored water with less inorganic nutrient content than the mainstem. While nutrients are reasonably high in the river channels, major algal blooms have until recently been rare because light is attenuated by water color or turbidity, and flushing is usually high (Ensign et al. 2004). During periods of low flow (as in 2008-2012) algal biomass as chlorophyll *a* increases in the river because lower flow causes settling of more solids and improves light conditions for algal growth. Periodically major algal blooms are seen in the tributary stream stations, some of which are impacted by point source discharges. Below some point sources, nutrient loading can be high and fecal coliform contamination occurs. Other stream stations drain blackwater swamps or agricultural areas, some of which periodically show elevated pollutant loads or effects (Mallin et al. 2001).

Average annual dissolved oxygen (DO) levels at the river channel stations for 2014 were generally higher than the average for 1995-2013. Dissolved oxygen levels were lowest during the summer and early fall, often falling below the state standard of 5.0 mg/L at several river and upper estuary stations. There is a dissolved oxygen sag in the main river channel that begins at Station DP below a paper mill discharge and near the Black River input, and persists into the mesohaline portion of the estuary. Mean oxygen levels were highest at the upper river stations NC11 and AC and in the middle to lower estuary at stations M35 to M18. Lowest mainstem average 2014 DO levels occurred at the lower river and upper estuary stations DP, IC, NAV, HB, BRR and M61 (7.0-7.3 mg/L). As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems.

The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River. These rivers are classified as blackwater systems because of their tea colored water. The Northeast Cape Fear River generally has lower

dissolved oxygen than the Black River; as such, in 2014 Stations NCF117 and B210, representing those rivers, had average DO concentrations of 6.3 and 7.1 mg/L, respectively. Several stream stations were severely stressed in terms of low dissolved oxygen during the year 2014, including NC403, GS, ANC and SR. River stations NAV, HB, and IC were all below 5.0 mg/L on 42% or more of occasions sampled, and BRR, DP and M61 were below on 25% of occasions sampled. Considering all sites sampled in 2014, we rated 15% as poor for dissolved oxygen, 24% as fair, and 61% as good, an improvement from 2013

Annual mean turbidity levels for 2014 were lower than the long-term average in all estuary stations. Highest mean turbidities were at NC11-DP, plus NAV (11-12 NTU) with turbidities generally low in the middle to lower estuary. The estuarine stations did not exceed the estuarine turbidity standard on our sampling trips except in January 2014. Turbidity was considerably lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river. Average turbidity levels were low in the freshwater streams, with the exception of one excursion to 81 NTU in August at SR.

Regarding nutrient concentrations, chronic or periodic high nitrate levels were found at a number of stream stations, including ROC (Rockfish Creek), 6RC (Six Runs Creek), PB (Panther Branch), NC403 and GCO (Great Coharie Creek). Average chlorophyll a concentrations across all sites were low in 2014. We note the highest levels in the river and estuary typically occur late spring to mid-summer. During the growing season May-September river flow as measured by USGS at Lock and Dam #1 was 35% higher for 2014 compared with the average for the blue-green algal bloom years 2009-2012 (2,593 CFS compared with 1,698 CFS). Higher flows restrict algal bloom formation by maintaining relatively high turbidity; thus troublesome cyanobacteria (i.e. blue-green algal blooms) did not occur in the Cape Fear River during 2014. Stream algal blooms exceeding 20 μ g/L in 2014 occurred at ANC, SR, PB and GS. Several stream stations, particularly PB, SR, GS, LRC, ROC, BRN, HAM and ANC showed high fecal coliform bacteria counts on a number of occasions.

For the 2014 period UNCW rated 100% of the stations as good in terms of chlorophyll *a* and turbidity. Fecal coliform bacteria counts were high in the system in 2014 and the lower estuary had high enterococcus on some occasions. For bacterial water quality overall, 34% of the sites rated as poor, 44% as fair, and 22% as good in 2014. Using the 5.0 mg/L DO standard for the mainstem river stations, and the 4.0 mg/L "swamp water" DO standard for the stream stations and blackwater river stations, 39% of the sites were rated poor or fair for dissolved oxygen. In addition, by our UNCW standards excessive nitrate and phosphorus concentrations were problematic at a number of stations.

Table of Contents

1.0	Introduction	1
	1.1 Site Description	2
	1.2 Report Organization	
2.0	Physical, Chemical, and Biological Characteristics of the Lower Cape Fear Rive and Estuary	
	Physical Parameters	10
	Chemical Parameters	14
	Biological Parameters	17

1.0 Introduction

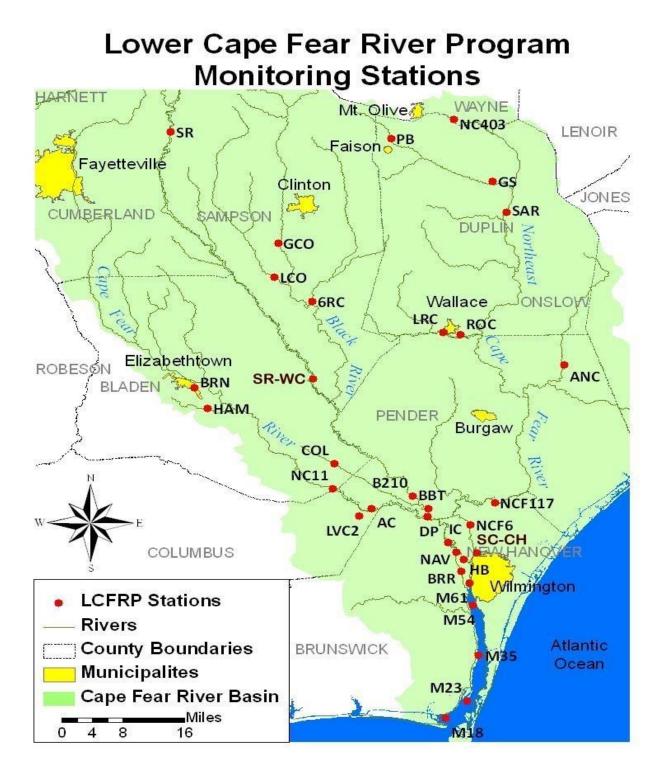
Michael A. Mallin Center for Marine Science University of North Carolina Wilmington

The Lower Cape Fear River Program is a unique science and education program that has a mission to develop an understanding of processes that control and influence the ecology of the Cape Fear River, and to provide a mechanism for information exchange and public education. This program provides a forum for dialogue among the various Cape Fear River user groups and encourages interaction among them. Overall policy is set by an Advisory Board consisting of representatives from citizen's groups, local government, industries, academia, the business community, and regulatory agencies. This report represents the scientific conclusions of the UNCW researchers participating in this program and does not necessarily reflect opinions of all other program participants. This report focuses on the period January through December 2014.

The scientific basis of the LCFRP consists of the implementation of an ongoing comprehensive physical, chemical, and biological monitoring program. Another part of the mission is to develop and maintain a data base on the Cape Fear basin and make use of this data to develop management plans. Presently the program has amassed an 19-year (1995-2014) data base that is available to the public, and is used as a teaching tool for programs like UNCW's River Run. Using this monitoring data as a framework the program goals also include focused scientific projects and investigation of pollution episodes. The scientific aspects of the program are carried out by investigators from the University of North Carolina Wilmington Center for Marine Science. The monitoring program was developed by the Lower Cape Fear River Program Technical Committee, which consists of representatives from UNCW, the North Carolina Division of Water Quality, The NC Division of Marine Fisheries, the US Army Corps of Engineers. technical representatives from streamside industries, the Cape Fear Public Utility Authority, Cape Fear Community College, Cape Fear River Watch, the North Carolina Cooperative Extension Service, the US Geological Survey, forestry and agriculture organizations, and others. This integrated and cooperative program was the first of its kind in North Carolina.

Broad-scale monthly water quality sampling at 16 stations in the estuary and lower river system began in June 1995 (UNCW Aquatic Ecology Laboratory, directed by Dr. Michael Mallin). Sampling was increased to 34 stations in February of 1996, 35 stations in February 1998, and 36 stations in 2005, then lowered to 33 in 2011. The Lower Cape Fear River Program added another component concerned with studying the benthic macrofauna of the system in 1996. This component is directed by Dr. Martin Posey and Mr. Troy Alphin of the UNCW Biology Department and includes the benefit of additional data collected by the Benthic Ecology Laboratory under Sea Grant and NSF sponsored projects in the Cape Fear Estuary. These data are collected and analyzed depending upon the availability of funding. The third major biotic component (added in

January 1996) was an extensive fisheries program directed by Dr. Mary Moser of the UNCW Center for Marine Science Research, with subsequent (1999) overseeing by Mr. Michael Williams and Dr. Thomas Lankford of UNCW-CMS. This program involved cooperative sampling with the North Carolina Division of Marine Fisheries and the North Carolina Wildlife Resources Commission. The fisheries program ended in December 1999, but was renewed with additional funds from the Z. Smith Reynolds Foundation from spring – winter 2000. The regular sampling that was conducted by UNCW biologists was assumed by the North Carolina Division of Marine Fisheries.


1.1. Site Description

The mainstem of the Cape Fear River is formed by the merging of the Haw and the Deep Rivers in Chatham County in the North Carolina Piedmont. However, its drainage basin reaches as far upstream as the Greensboro area (Fig. 1.1). The mainstem of the river has been altered by the construction of several dams and water control structures. In the coastal plain, the river is joined by two major tributaries, the Black and the Northeast Cape Fear Rivers (Fig. 1.1). These 5th order blackwater streams drain extensive riverine swamp forests and add organic color to the mainstem. The watershed (about 9,164 square miles) is the most heavily industrialized in North Carolina with 203 permitted wastewater discharges with a permitted flow of approximately 429 million gallons per day, and (as of 2010) over 2.07 million people residing in the basin (NCDENR Basinwide Information Management System (BIMS) & 2010 Census). Approximately 23% of the land use in the watershed is devoted to agriculture and livestock production (2006 National Land Cover Dataset), with livestock production dominated by swine and poultry operations. Thus, the watershed receives considerable point and non-point source loading of pollutants. However, the estuary is a well-flushed system, with flushing time ranging from 1 to 22 days with a median flushing time of about seven days, much shorter than the other large N.C. estuaries to the north (Ensign et al. 2004).

Water quality is monitored by boat at eight stations in the Cape Fear Estuary (from Navassa to Southport) and one station in the Northeast Cape Fear Estuary (Table 1.1; Fig. 1.1). We note that after July 2011 sampling was discontinued at stations M42 and SPD, per agreement with the North Carolina Division of Water Quality; and in 2012 sampling was expanded at Smith Creek at the Castle Hayne Road bridge (Table 1.1) and initiated at a new site along the South River (SR-WC). Riverine stations sampled by boat include NC11, AC, DP, IC, and BBT (Table 1.1; Fig. 1.1). NC11 is located upstream of any major point source discharges in the lower river and estuary system, and is considered to be representative of water quality entering the lower system (we note that the City of Wilmington and portions of Brunswick County get their drinking water from the river just upstream of Lock and Dan #1). Station BBT is located on the Black River between Thoroughfare (a stream connecting the Cape Fear and Black Rivers) and the mainstem Cape Fear, and is influenced by both rivers. We consider B210 and NCF117 to represent water quality entering the lower Black and Northeast Cape Fear Rivers, respectively. Data has also been collected at stream and river

Collected b	y Boat							
AEL Station	DWR Station #	Description	Comments	County	Lat	Lon	Stream Class.	HUC
NC11	B8360000	Cape Fear River at NC 11 nr East Arcadia	Below Lock and Dam 1, Represents water entering lower basin	Bladen	34.3969	-78.2675	WS-IVSw	03030005
LVC2	B8441000	Livingston Creek at Momentive Walkway nr Acme	DWR ambient station, Downstream of Momentive	Columbus	34.3353	-78.2011	C Sw	03030005
AC	B8450000	Cape Fear River at Neils Eddy Landing nr Acme	1 mile below IP, DWR ambient station	Columbus	34.3555	-78.1794	C Sw	03030005
DP	B8465000	Cape Fear River at Intake nr Hooper Hill	AT DAK intake, just above confluence with Black R.	Brunswick	34.3358	-78.0534	C Sw	03030005
BBT		Black River below Lyons Thorofare	UNCW AEL station	Pender	34.3513	-78.0490	C Sw ORW+	0303005
IC	B9030000	Cape Fear River ups Indian Creek nr Phoenix	Downstream of several point source discharges	Brunswick	34.3021	-78.0137	C Sw	0303005
NAV	B9050025	Cape Fear River dns of RR bridge at Navassa	Downstream of several point source discharges	Brunswick	34.2594	-77.9877	SC	0303005
НВ	B9050100	Cape Fear River at S. end of Horseshoe Bend nr Wilmington	Upstream of confluence with NE Cape Fear River	Brunswick	34.2437	-77.9698	SC	0303005
BRR	B9790000	Brunswick River dns NC 17 at park nr Belville	Near Belville discharge	Brunswick	34.2214	-77.9787	SC	03030005
M61	B9800000	Cape Fear River at Channel Marker	Downstream of several point source	New Hanover	34.1938	-77.9573	SC	03030005
M54	B9795000	61 at Wilmington Cape Fear River at Channel Marker	discharges Downstream of several point source	New Hanover	34.1393	-77.946	SC	03030005
M35	B9850100	54 Cape Fear River at Channel Marker	discharges Upstream of Carolina Beach	Brunswick	34.0335	-77.937	SC	03030005
M23	B9910000	35 Cape Fear River at Channel Marker	discharge Downstream of Carolina Beach	Brunswick	33.9456	-77.9696	SA HQW	03030005
M18	B9921000	Cape Fear River at Channel Marker	discharge Near mouth of Cape Fear River	Brunswick	33.913	-78.017	SC	03030005
NCF6	B9670000	18 NE Cape Fear nr Wrightsboro	Downstream of several point source	New Hanover	34.3171	-77.9538	C Sw	0303007
			discharges					
Collected b	y Land		W. Chillian Gara					
6RC	B8740000	Six Runs Creek at SR 1003 nr Ingold	Upstream of Black River, CAFOs in watershed	Sampson	34.7933	-78.3113	C Sw ORW+	03030006
LCO	B8610001	Little Coharie Creek at SR 1207 nr Ingold	Upstream of Great Coharie, CAFOs in watershed	Sampson	34.8347	-78.3709	C Sw	03030006
GCO	B8604000	Great Coharie Creek at SR 1214 nr Butler Crossroads	Downstream of Clinton, CAFOs in watershed	Sampson	34.9186	-78.3887	C Sw	03030006
SR	B8470000	South River at US 13 nr Cooper	Downstream of Dunn	Sampson	35.156	-78.6401	C Sw	03030006
BRN	B8340050	Browns Creek at NC87 nr Elizabethtown	CAFOs in watershed	Bladen	34.6136	-78.5848	С	03030005
HAM	B8340200	Hammond Creek at SR 1704 nr Mt. Olive	CAFOs in watershed	Bladen	34.5685	-78.5515	С	03030005
COL	B8981000	Colly Creek at NC 53 at Colly	Pristine area	Bladen	34.4641	-78.2569	C Sw	03030006
B210	B9000000	Black River at NC 210 at Still Bluff	1st bridge upstream of Cape Fear River	Pender	34.4312	-78.1441	C Sw ORW+	03030006
NC403	B9090000	NE Cape Fear River at NC 403 nr Williams	Downstream of Mt. Olive Pickle, CAFOs in watershed	Duplin	35.1784	-77.9807	C Sw	0303007
PB	B9130000	Panther Branch (Creek) nr Faison	Downstream of Bay Valley Foods	Duplin	35.1345	-78.1363	C Sw	0303007
GS	B9191000	Goshen Swamp at NC 11 and NC 903	CAFOs in watershed	Duplin	35.0281	-77.8516	C Sw	0303007
SAR	B9191500	nr Kornegay NE Cape Fear River SR 1700 nr	Downstream of several point source	Duplin	34.9801	-77.8622	C Sw	0303007
ROC	B9430000	Sarecta Rockfish Creek at US 117 nr Wallace	discharges Upstream of Wallace discharge	Duplin	34.7168	-77.9795	C Sw	0303007
LRC	B9460000	Little Rockfish Creek at NC 11 nr	DWR Benthic station	Duplin	34.7224	-77.9814	C Sw	0303007
ANC	B9490000	Wallace Angola Creek at NC 53 nr Maple Hill	DWR Benthic station	Pender	34.6562	-77.7351	C Sw	0303007
SR WC	B8920000	South River at SR 1007	Upstream of Black River	Sampson	34.6402	-78.3116	C Sw ORW+	03030006
		(Wildcat/Ennis Bridge Road) NE Cape Fear River at US 117 at	DWR ambient station, Downstream	New Hanover	34.3637			0303000
NCF117	B9580000	Castle Hayne Smith Creek at US 117 and NC 133 at	of point source discharges Urban runoff, Downstream of			-77.8965	B Sw	
SC-CH	B9720000	Wilmington	Wilmington Northside WWTP	New Hanover	34.2586	-77.9391	C Sw	0303007

Figure 1.1. Map of the Lower Cape Fear River system and the LCFRP sampling stations.

2.0 Physical, Chemical, and Biological Characteristics of the Lower Cape Fear River and Estuary

Michael A. Mallin and Matthew R. McIver Aquatic Ecology Laboratory Center for Marine Science University of North Carolina Wilmington

2.1 - Introduction

This section of the report includes a discussion of the physical, chemical, and biological water quality parameters, concentrating on the January-December 2014 Lower Cape Fear River Program monitoring period. These parameters are interdependent and define the overall condition of the river. Physical parameters measured during this study included water temperature, dissolved oxygen, field turbidity and laboratory turbidity, total suspended solids (TSS), salinity, conductivity, pH and light attenuation. The chemical makeup of the Cape Fear River was investigated by measuring the magnitude and composition of nitrogen and phosphorus in the water. Three biological parameters including fecal coliform bacteria or enterococcus bacteria, chlorophyll *a* and biochemical oxygen demand were examined.

2.2 - Materials and Methods

All samples and field parameters collected for the estuarine stations of the Cape Fear River (NAV down through M18) were gathered on an ebb tide. This was done so that the data better represented the river water flowing downstream through the system rather than the tidal influx of coastal ocean water. Sample collection and analyses were conducted according to the procedures in the Lower Cape Fear River Program Quality Assurance/Quality Control (QA/QC) manual. Technical Representatives from the LCFRP Technical Committee and representatives from the NC Division of Water Quality inspect UNCW laboratory procedures and periodically accompany field teams to verify proper procedures are followed. By agreement with N.C. Division of Water Quality, after June 2011 sampling was discontinued at stations M42 and SPD, but full sampling was added at SC-CH and SR-WC in 2012. We note the Town of Burgaw left the program as of 2013 and Stations BCRR and BC117 are no longer being sampled.

Physical Parameters

Water Temperature, pH, Dissolved Oxygen, Turbidity, Light, Salinity, Conductivity

Field parameters other than light attenuation were measured at each site using a YSI 6920 (or 6820) multi-parameter water quality sonde displayed on a YSI 650 MDS. Each parameter is measured with individual probes on the sonde. At stations sampled by boat (see Table 1.1) physical parameters were measured at 0.1 m and at the bottom (up to 12 m). Occasionally, high flow prohibited the sonde from reaching the actual bottom and measurements were taken as deep as possible. At the terrestrially sampled stations (i.e.

from bridges or docks) the physical parameters were measured at a depth of 0.1 m. The Aquatic Ecology Laboratory at the UNCW CMS is State-certified by the N.C. Division of Water Quality to perform field parameter measurements. The light attenuation coefficient k was determined from data collected on-site using vertical profiles obtained by a Li-Cor LI-1000 integrator interfaced with a Li-Cor LI-193S spherical quantum sensor.

Chemical Parameters

Nutrients

A local State-certified analytical laboratory was contracted to conduct all chemical analyses except for orthophosphate, which is performed at CMS. The following methods detail the techniques used by CMS personnel for orthophosphate analysis.

Orthophosphate (PO_4^{-3})

Water samples were collected ca. 0.1 m below the surface in triplicate in amber 125 mL Nalgene plastic bottles and placed on ice. In the laboratory 50 mL of each triplicate was filtered through separate1.0 micron pre-combusted glass fiber filters, which were frozen and later analyzed for chlorophyll *a*. The triplicate filtrates were pooled in a glass flask, mixed thoroughly, and approximately 100 mL was poured into a 125 mL plastic bottle to be analyzed for orthophosphate. Samples were frozen until analysis.

Orthophosphate analyses were performed in duplicate using an approved US EPA method for the Bran-Lubbe AutoAnalyzer (Method 365.5). In this technique the orthophosphate in each sample reacts with ammonium molybdate and anitmony potassium tartrate in an acidic medium (sulfuric acid) to form an anitmony-phospho-molybdate complex. The complex is then reacted with ascorbic acid and forms a deep blue color. The intensity of the color is measured at a wavelength of 880 nm by a colorimeter and displayed on a chart recorder. Standards and spiked samples were analyzed for quality assurance.

Biological Parameters

Fecal Coliform Bacteria / Enterococcus

Fecal coliform bacteria were analyzed by a State-certified laboratory contracted by the LCFRP. Samples were collected approximately 0.1 m below the surface in sterile plastic bottles provided by the contract laboratory and placed on ice for no more than six hours before analysis. After August 2011 the fecal coliform analysis was changed to *Enterococcus* in the estuarine stations downstream of NAV and HB (Stations BRR, M61, M35, M23 and M18).

Chlorophyll a

The analytical method used to measure chlorophyll *a* is described in Welschmeyer (1994) and US EPA (1997) and was performed by CMS personnel. Chlorophyll *a* concentrations were determined utilizing the 1.0 micron filters used for filtering samples for orthophosphate analysis. All filters were wrapped individually in foil, placed in airtight containers and stored in the freezer. During analysis each filter was immersed in 10 mL of 90% acetone for 24 hours, which extracts the chlorophyll *a* into solution. Chlorophyll *a* concentration of each solution was measured on a Turner 10-AU fluorometer. The fluorometer uses an optimal combination of excitation and emission bandwidth filters which reduces the errors inherent in the acidification technique. The Aquatic Ecology Laboratory at the CMS is State-certified by the N.C. Division of Water Quality for the analysis of chlorophyll *a* (chlorophyll at four LCFRP stations are required by NCDWR to be analyzed by state-certified methods).

Biochemical Oxygen Demand (BOD)

Five sites were originally chosen for BOD analysis. One site was located at NC11, upstream of International Paper, and a second site was at AC, about 3 miles downstream of International Paper (Fig.1.1). Two sites were located in blackwater rivers (NCF117 and B210) and one site (BBT) was situated in an area influenced by both the mainstem Cape Fear River and the Black River. For the sampling period May 2000-April 2004 additional BOD data were collected at stream stations 6RC, LCO, GCO, BRN, HAM and COL in the Cape Fear and Black River watersheds. In May 2004 those stations were dropped and sampling commenced at ANC, SAR, GS, N403, ROC and BC117 in the Northeast Cape Fear River watershed for several years. The procedure used for BOD analysis is Method 5210 in Standard Methods (APHA 1995). Samples were analyzed for both 5-day and 20day BOD. During the analytical period, samples were kept in airtight bottles and placed in an incubator at 20° C. All experiments were initiated within 6 hours of sample collection. Samples were analyzed in duplicate. Dissolved oxygen measurements were made using a YSI Model 5000 meter that was air-calibrated. No adjustments were made for pH since most samples exhibited pH values within or very close to the desired 6.5-7.5 range (pH is monitored during the analysis as well); a few sites have naturally low pH and there was no adjustment for these samples because it would alter the natural water chemistry and affect true BOD. Data are presented within for the five original sites.

Parameter	Method	NC DWR Certified
Water Temperature	SM 2550B-2000	Yes
Dissolved Oxygen	SM 4500O G-2001	Yes
рН	SM 4500 H B-2000	Yes
Specific Conductivity	SM 2510 B-1997	Yes
Lab Turbidity	SM 2130 B-2001	Yes
Field Turbidity	SM 2130 B-2001	No

Chlorophyll a	EPA 445.0 Rev. 1.2	Yes
Biochemical Oxygen Demand	SM 5210 B-2001	No
Parameter	Method	NC DWR Certified
Total Nitrogen	By addition	
Nitrate + Nitrite	EPA 353.2 Rev 2.0 1993	Yes
Total Kjeldahl Nitrogen	EPA 351.2 Rev 2.0 1993	Yes
Ammonia Nitrogen	EPA 350.1 Rev 2.0 1993	Yes
Total Phosphorus	SM 4500 P E-1999	Yes
Orthophosphate	EPA 365.5	No
Fecal Coliform	SM 9222 D-1997	Yes
Enterococcus	Enterolert IDEXX	Yes

2.3 - Results and Discussion

This section includes results from monitoring of the physical, biological, and chemical parameters at all stations for the time period January-December 2014. Discussion of the data focuses both on the river channel stations and stream stations, which sometimes reflect poorer water quality than mainstem stations. The contributions of the two large blackwater tributaries, the Northeast Cape Fear River and the Black River, are represented by conditions at NCF117 and B210, respectively. The Cape Fear Region did not experience any significant hurricane activity during this monitoring period (after major hurricanes in 1996, 1998, and 1999). Therefore this report reflects low to medium growing season flow conditions for the Cape Fear River and Estuary.

Physical Parameters

Water temperature

Water temperatures at all stations ranged from 1.1 to 30.2°C, and individual station annual averages ranged from 14.0 to 19.2°C (Table 2.1). Highest temperatures occurred during July and August and lowest temperatures during January. Stream stations were generally cooler than river stations, most likely because of shading and lower nighttime air temperatures affecting the shallower waters.

Salinity

Salinity at the estuarine stations (NAV through M18; also NCF6 in the Northeast Cape Fear River) ranged from 0.0 to 34.1 practical salinity units (psu) and station annual means ranged from 1.2 to 26.3 psu (Table 2.2). Lowest salinities occurred in mid-summer and

highest salinities occurred in late fall and winter. The annual mean salinity for 2014 was similar to that of the eighteen-year average for 1995-2013 for all of the estuarine stations (Figure 2.1). Two stream stations, NC403 and PB, had occasional oligohaline conditions due to discharges from pickle production facilities. SC-CH is a tidal creek that enters the Northeast Cape Fear River upstream of Wilmington and salinity there ranged widely, from 0.1 to 18.5 psu.

Conductivity

Conductivity at the estuarine stations ranged from 0.10 to 51.92 mS/cm and from 0.06 to 4.79 mS/cm at the freshwater stations (Table 2.3). Temporal conductivity patterns followed those of salinity. Dissolved ionic compounds increase the conductance of water, therefore, conductance increases and decreases with salinity, often reflecting river flow conditions due to rainfall. Stations PB and NC403 are below industrial discharges, and often have elevated conductivity. Smith Creek (SC-CH) is an estuarine tidal creek and the conductivity values reflect this (Table 2.3).

рΗ

pH values ranged from 3.7 to 8.1 and station annual means ranged from 4.0 to 7.9 (Table 2.4). pH was typically lowest upstream due to acidic swamp water inputs and highest downstream as alkaline seawater mixes with the river water. Low pH values at COL predominate because of naturally acidic blackwater inputs at this near-pristine stream station. We also note that LRC had an unusually high pH level (8.0) in September 2014 (Table 2.4).

Dissolved Oxygen

Dissolved oxygen (DO) problems have been a major water quality concern in the lower Cape Fear River and its estuary, and several of the tributary streams (Mallin et al. 1999; 2000; 2001a; 2001b; 2002a; 2002b; 2003; 2004; 2005a; 2006a; 2006b; 2007; 2008; 2009; 2010; 2011; 2012; 2013; 2014). Surface concentrations for all sites in 2014 ranged from 0.7 to 13.7 mg/L and station annual means ranged from 6.2 to 10.1 mg/L (Table 2.5). Average annual DO levels at the river channel and estuarine stations for 2014 were slightly higher than the average for 1995-2013 (Figure 2.2). River dissolved oxygen levels were lowest during the summer and early fall (Table 2.5), often falling below the state standard of 5.0 mg/L at several river and upper estuary stations. Working synergistically to lower oxygen levels are two factors: lower oxygen carrying capacity in warmer water and increased bacterial respiration (or biochemical oxygen demand, BOD), due to higher temperatures in summer. Unlike other large North Carolina estuaries (the Neuse, Pamlico and New River) the Cape Fear estuary rarely suffers from dissolved oxygen stratification. This is because, despite salinity stratification the oxygen remains well mixed due to strong estuarine gravitational circulation and high freshwater inputs (Lin et al. 2006). Thus, hypoxia in the Cape Fear is present throughout the water column.

There is a dissolved oxygen sag in the main river channel that begins at DP below a paper mill discharge and persists into the mesohaline portion of the estuary (Fig. 2.2). Mean oxygen levels were highest at the upper river stations NC11 and AC and in the low-tomiddle estuary at stations M35 to M18. Lowest mainstem mean 2014 DO levels occurred at the river and upper estuary stations IC, NAV, HB, BRR and M61 (7.0-7.3 mg/L). Stations NAV, HB and IC were all below 5.0 mg/L on 33% or more of occasions sampled, and BRR, M61 and DP were below on 25% of occasions sampled. Average estuary DO concentrations were an improvement from 2013. Based on number of occasions the river stations were below 5 mg/L UNCW rated NAV, HB and IC as poor for 2014; the mid to lower estuary stations were rated as fair to good. Discharge of high BOD waste from the paper/pulp mill just above the AC station (Mallin et al. 2003), as well as inflow of blackwater from the Northeast Cape Fear and Black Rivers, helps to diminish oxygen in the lower river and upper estuary. Additionally, algal blooms periodically form behind Lock and Dam #1 (including the blue-green algal blooms in recent years), and the chlorophyll a they produce is strongly correlated with BOD at Station NC11 (Mallin et al. 2006b); thus the blooms do contribute to lower DO in the river. As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems.

The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River (NCF117 2014 mean = 6.3, NCF6 = 6.9, B210 2014 mean = 7.1) . These rivers are classified as blackwater systems because of their tea colored water. As the water passes through swamps en route to the river channel, tannins from decaying vegetation leach into the water, resulting in the observed color. Decaying vegetation on the swamp floor has an elevated biochemical oxygen demand and usurps oxygen from the water, leading to naturally low dissolved oxygen levels. Runoff from concentrated animal feeding operations (CAFOs) may also contribute to chronic low dissolved oxygen levels in these blackwater rivers (Mallin et al. 1998; 1999; 2006; Mallin 2000). We note that phosphorus and nitrogen (components of animal manure) levels have been positively correlated with BOD in the blackwater rivers and their major tributaries (Mallin et al. 2006b).

Several stream stations were severely stressed in terms of low dissolved oxygen during the year 2014. Station GS had DO levels below 4.0 mg/L 33% of the occasions sampled, as did NC403, and SR was below that level 25% (Table 2.5). Some of this can be attributed to low summer water conditions and some potentially to CAFO runoff; however point-source discharges also likely contribute to low dissolved oxygen levels at NC403 and possibly SR, especially via nutrient loading (Mallin et al. 2001a; 2002a; 2004). Hypoxia is thus a continuing and widespread problem, with 39% of the sites impacted in 2014 (an improvement from 2012 and 2013 however).

Field Turbidity

Field turbidity levels ranged from 0 to 81 Nephelometric turbidity units (NTU) and station annual means ranged from 0 to 13 NTU (Table 2.6). The State standard for estuarine turbidity is 25 NTU. Highest mean turbidities were at NC11-DP, plus NAV (12-13 NTU) with turbidities generally low in the middle to lower estuary (Figure 2.3). The estuarine

stations did not exceed the estuarine turbidity standard on our 2014 sampling trips except during January. Annual mean turbidity levels for 2014 were well below the long-term average at all estuary sites (Fig. 2.3). Turbidity was considerably lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river. Average turbidity levels were low in the freshwater streams, with the exception of one excursion to 81 NTU in August at SR. The State standard for freshwater turbidity is 50 NTU.

Note: In addition to the laboratory-analyzed turbidity that are required by NCDWQ for seven locations, the LCFRP uses nephelometers designed for field use, which allows us to acquire in situ turbidity from a natural situation. North Carolina regulatory agencies are required to use turbidity values from water samples removed from the natural system, put on ice until arrival at a State-certified laboratory, and analyzed using laboratory nephelometers. Standard Methods notes that transport of samples and temperature change alters true turbidity readings. Our analysis of samples using both methods shows that lab turbidity is nearly always lower than field turbidity; thus we do not discuss lab turbidity in this report.

Total Suspended Solids

A new monitoring plan was developed for the LCFRP in September 2011. These changes were suggested by the NC Division of Water Resources (then DWQ). NCDWR suggested the LCFRP stop monitoring TSS at Stations ANC, GS, 6RC, LCO, SR, BRN, HAM, COL, SR-WC and monitor turbidity instead. DWQ believed turbidity would be more useful than TSS in evaluating water quality at these stations because there are water quality standards for turbidity. TSS is used by the DWQ NPDES Unit to evaluate discharges. No LCFRP subscribers discharge in these areas.

Total suspended solid (TSS) values system wide ranged from 1 to 54.3 mg/L with station annual means from 3 to 15 mg/L (Table 2.7). The overall highest river values were at NAV, HB, M54 and M18. In the stream stations TSS was generally considerably lower than the river and estuary, except for a few relatively minor incidents at Station PB. Although total suspended solids (TSS) and turbidity both quantify suspended material in the water column, they do not always go hand in hand. High TSS does not mean high turbidity and vice versa. This anomaly may be explained by the fact that fine clay particles are effective at dispersing light and causing high turbidity readings, while not resulting in high TSS. On the other hand, large organic or inorganic particles may be less effective at dispersing light, yet their greater mass results in high TSS levels. While there is no NC ambient standard for TSS, many years of data from the lower Cape Fear watershed indicates that 25 mg/L can be considered elevated. The fine silt and clay in the upper to middle estuary sediments are most likely derived from the Piedmont and carried downstream to the estuary, while the sediments in the lowest portion of the estuary are marine-derived sands (Benedetti et al. 2006).

Light Attenuation

The attenuation of solar irradiance through the water column is measured by a logarithmic function (k) per meter. The higher this light attenuation coefficient is the more strongly light is attenuated (through absorbance or reflection) in the water column. River and estuary light attenuation coefficients ranged from 0.08 to 6.40/m and station annual means ranged from 1.68 at M18 to 4.14 /m at HB (Table 2.8). Elevated mean and median light attenuation occurred from DP in the lower river downstream to M54 in the estuary (Table 2.8). In the Cape Fear system, light is attenuated by both turbidity and water color.

High light attenuation did not always coincide with high turbidity. Blackwater, though low in turbidity, will attenuate light through absorption of solar irradiance. At NCF6 and BBT, blackwater stations with moderate turbidity levels, light attenuation was high. Compared to other North Carolina estuaries the Cape Fear has high average light attenuation. The high average light attenuation is a major reason why phytoplankton production in the major rivers and the estuary of the LCFR is generally low. Whether caused by turbidity or water color this attenuation tends to limit light availability to the phytoplankton (Mallin et al. 1997; 1999; 2004; Dubbs and Whalen 2008).

Chemical Parameters – Nutrients

Total Nitrogen

Total nitrogen (TN) is calculated from TKN (see below) plus nitrate; it is not analyzed in the laboratory. TN ranged from 50 (detection limit) to 9,400 μ g/L and station annual means ranged from 424 to 3,121 μ g/L (Table 2.9). Mean total nitrogen in 2014 was somewhat lower than the eighteen-year mean at the river and estuary stations, except at the blackwater river sites (Figure 2.4). Previous research (Mallin et al. 1999) has shown a positive correlation between river flow and TN in the Cape Fear system. In the main river total nitrogen concentrations were highest between NC11 and DP, entering the system then declined into the lower estuary, most likely reflecting uptake of nitrogen into the food chain through algal productivity and subsequent grazing by planktivores as well as through dilution and marsh denitrification. The highest median TN value at the stream stations was at ROC, with 2.415 μ g/L; other elevated TN values were seen at PB, NC403 and 6RC.

Nitrate+Nitrite

Nitrate+nitrite (henceforth referred to as nitrate) is the main species of inorganic nitrogen in the Lower Cape Fear River. Concentrations system wide ranged from 10 (detection limit) to 8,300 μ g/L and station annual means ranged from 18 to 1,670 μ g/L (Table 2.10). The highest average riverine nitrate levels were at NC11 and AC (819 and 714 μ g/L, respectively – and much higher than in 2013) indicating that much of this nutrient is imported from upstream. Moving downstream, nitrate levels decrease most likely as a result of uptake by primary producers, microbial denitrification in riparian marshes and tidal dilution. Despite this, the rapid flushing of the estuary (Ensign et al. 2004) permits

sufficient nitrate to enter the coastal ocean in the plume and contribute to offshore productivity (Mallin et al. 2005b). Nitrate can limit phytoplankton production in the lower estuary in summer (Mallin et al. 1999). The blackwater rivers carried lower concentrations of nitrate compared to the mainstem Cape Fear stations; i.e. the Northeast Cape Fear River (NCF117 mean = 458 μ g/L) and the Black River (B210 = 395 μ g/L). Lowest river nitrate occurred during early summer and early fall; in general, average concentrations in 2014 exceeded those of 2013.

Several stream stations showed high levels of nitrate on occasion including ROC, 6RC, GCO, NC403, and PB. 6RC, ROC and GCO primarily receive non-point agricultural or animal waste drainage, while point sources contribute to NC403 and PB. Over the past several years a considerable number of experiments have been carried out by UNCW researchers to assess the effects of nutrient additions to water collected from blackwater streams and rivers (i.e. the Black and Northeast Cape Fear Rivers, and Colly and Great Coharie Creeks). These experiments have collectively found that additions of nitrogen (as either nitrate, ammonium, or urea) significantly stimulate phytoplankton production and BOD increases. Critical levels of these nutrients were in the range of 200 to 500 μ g/L as N (Mallin et al. 1998; Mallin et al. 2001a; Mallin et al. 2002a, Mallin et al. 2004). Thus, we conservatively consider nitrate concentrations exceeding 500 μ g/L as N in Cape Fear watershed streams to be potentially problematic to the stream's environmental health.

Ammonium/ammonia

Ammonium concentrations ranged from 10 (detection limit) to 1,000 μ g/L and station annual means ranged from 26 to 118 μ g/L (Table 2.11). River areas with the highest mean ammonium levels this monitoring period included AC and DP, which are downstream of a pulp mill discharge, and M61 and M54 in the upper estuary, nearest the wastewater treatment plant discharge from Wilmington. At the stream stations, areas with highest levels of ammonium were PB, LVC2, NC403, ANC and SR (due to one unusual peak of 1,000 μ g/L in August (Table 2.11). PB had the second highest peak of 460 μ g/L in May.

Total Kjeldahl Nitrogen

Total Kjeldahl Nitrogen (TKN) is a measure of the total concentration of organic nitrogen plus ammonium. TKN ranged from 50 (detection limit) to 3,400 μ g/L and station annual means ranged from 321 to 1,375 μ g/L (Table 2.12). TKN concentration decreases oceanward through the estuary, likely due to ocean dilution and food chain uptake of nitrogen. Several individual peaks at or exceeding 2,000 μ g/L range occurred in stations ANC, GS, LRC, ROC and COL; ANC also had the highest median concentrations.

Total Phosphorus

Total phosphorus (TP) concentrations ranged from 10 (detection limit) to 830 μ g/L and station annual means ranged from 33 to 298 μ g/L (Table 2.13). in contrast to 2013, mean TP for 2014 was lower than the eighteen-year mean in the estuary and river stations

(Figure 2.5). In the river TP was highest at the upper riverine channel stations NC11, AC and DP and declined downstream into the estuary. Some of this decline is attributable to the settling of phosphorus-bearing suspended sediments, yet incorporation of phosphorus into bacteria and algae is also responsible.

The experiments discussed above in the nitrate subsection also involved additions of phosphorus, either as inorganic orthophosphate or a combination of inorganic plus organic P. The experiments showed that additions of P exceeding 500 μ g/L led to significant increases in bacterial counts, as well as significant increases in BOD over control. Thus, we consider concentrations of phosphorus above 500 μ g/L to be potentially problematic to blackwater streams (Mallin et al. 1998; 2004). Streams periodically exceeding this critical concentration included ROC and PB. Station PB is downstream of industrial or wastewater discharges, while ROC is in a non-point agricultural areas.

Orthophosphate

Orthophosphate ranged from undetectable to 600 μ g/L and station annual means ranged from undetectable to 175 μ g/L (Table 2.14). Much of the main river orthophosphate load is imported into the Lower Cape Fear system from upstream areas, as NC11 or AC typically have high levels; there are also inputs of orthophosphate from the paper mill above AC (Table 2.14). The Northeast Cape Fear River had higher orthophosphate levels than the Black River. Orthophosphate can bind to suspended materials and is transported downstream via particle attachment; thus high levels of turbidity at the uppermost river stations may be an important factor in the high orthophosphate levels. Turbidity declines toward the lower estuary because of settling, and orthophosphate concentration also declines. In the estuary, primary productivity helps reduce orthophosphate concentrations by assimilation into biomass. Orthophosphate levels typically reach maximum concentrations during summertime, when anoxic sediment releases bound phosphorus. Also, in the Cape Fear Estuary, summer algal productivity is limited by nitrogen, thereby allowing the accumulation of orthophosphate (Mallin et al. 1997; 1999). In spring, productivity in the estuary is usually limited by phosphorus (Mallin et al. 1997; 1999).

ROC, ANC and GCO had the highest stream station concentrations. All of those sites are in non-point source areas.

<u>Chemical Parameters - EPA Priority Pollutant Metals</u>

The LCFRP had previously sampled for water column metals (EPA Priority Pollutant Metals) on a bimonthly basis. However, as of 2007 this requirement was suspended by the NC Division of Water Quality and these data are no longer collected by the LCFRP. Revised metals sampling is being re-initiated in late 2015, however.

Biological Parameters

Chlorophyll a

During this monitoring period in most locations chlorophyll a was low, except for elevated concentrations in June-July in the upper estuary and March in the upper river stations (Table 2.15). The state standard was not exceeded in our samples in 2014. We note that at the upper site NC11 it has been demonstrated that chlorophyll a biomass is significantly correlated with biochemical oxygen demand (BOD5 – Mallin et al. 2006b). System wide, chlorophyll a ranged from undetectable to 37 μ g/L and station annual means ranged from 1-9 μ g/L, lower than in 2013. Production of chlorophyll a biomass is usually low to moderate in the rivers and estuary primarily because of light limitation by turbidity in the mainstem (Dubbs and Whalen 2008) and high organic color and low inorganic nutrients in the blackwater rivers.

Spatially, besides Station NC11 along the mainstem high values are normally found in the mid-to-lower estuary stations because light becomes more available downstream of the estuarine turbidity maximum (Fig. 2.6). On average, flushing time of the Cape Fear estuary is rapid, ranging from 1-22 days with a median of 6.7 days (Ensign et al. 2004). This does not allow for much settling of suspended materials, leading to light limitation of phytoplankton production. However, under lower-than-average flows there is generally clearer water through less suspended material and less blackwater swamp inputs. For the growing season May-September, long-term (1995-2013) average monthly flow at Lock and Dam #1 was approximately 3,529 CFS; however, for cyanobacterial bloom years 2009-2012 the growing season average flow was 1,698 CFS (USGS data; (http://nc.water.usgs.gov/realtime/real_time_cape_fear.html). For 2014, discharge in May-September was 35% above the 2009-2012 average at 2,593 CFS. Thus, cyanobacterial bloom formation in the river and upper estuary were suppressed by increased flow; however most riverine and upper estuarine stations showed chlorophyll a increases relative to the long-term average (Figure 2.6).

As noted in earlier reports, blooms of cyanobacteria (blue-green algae) called *Microcystis aeruginosa* began occurring in 2009 and continued to occur in summer 2010, 2011 and 2012. This species contains many strains long known to produce toxins, both as a threat to aquatic life and to humans as well (Burkholder 2002). At least some of the blooms in the main stem of the Cape Fear have produced toxins (Isaacs 2013). River discharge appears to be a major factor controlling formation and persistence of these blooms. The blooms in 2009-2012 all occurred when average river discharge for May-September was below 1,900 CFS. The cyanobacterial blooms were suppressed by elevated river flow in 2013-2014.

Phytoplankton blooms occasionally occur at the stream stations, with a few occurring at various months in 2014 (Table 2.15). These streams are generally shallow, so vertical mixing does not carry phytoplankton cells down below the critical depth where respiration exceeds photosynthesis. In areas where the forest canopy opens up large blooms can occur. When blooms occur in blackwater streams they can become sources of BOD upon

death and decay, reducing further the low summer dissolved oxygen conditions common to these waters (Mallin et al. 2001a; 2002a; 2004; 2006b). Stations ANC, GS, PB and SR had minor algal blooms in 2014, although not exceeding the state standard of 40 μ g/L (Table 2.15).

Biochemical Oxygen Demand

For the mainstem river, median annual five-day biochemical oxygen demand (BOD5) concentrations were approximately equivalent between NC11 and AC, suggesting that in 2014 (as was the case with 2007 through 2013) there was little discernable effect of BOD loading from the nearby pulp/paper mill inputs (Table 2.16). BOD5 values between 1.0 and 2.0 mg/L are typical for the rivers in the Cape Fear system (Mallin et al. 2006b) and in 2014 BOD5 values ranged from 0.7-3.0 mg/L. There were no major differences among sites for BOD5 or BOD20 in 2013. BOD20 values showed similar patterns to BOD5 in 2014.

Fecal Coliform Bacteria/ Enterococcus bacteria

Fecal coliform (FC) bacterial counts ranged from 5 to 60,000 CFU/100 mL and station annual geometric means ranged from 12 to 710 CFU/100 mL (Table 2.17). The state human contact standard (200 CFU/100 mL) was exceeded in the mainstem twice at several locations in 2014. During 2014 the stream stations showed very high fecal coliform pollution levels. Ham exceeded 200 CFU/100 mL 75% of the time sampled; BRN 67%, ANC, PB, LRC 50%, GS 42%, and SAR, NC403, ROC, LCO and SR 33% of the time sampled. Notably excessive counts occurred of 43,000 CFU/100 mL at SAR and 31,000 CFU/100 mL at ROC in December, 32,000 CFU/100 mL at HAM and 18,000 CFU/100 mL in October. NC403 and PB are located below point source discharges and the other sites are primarily influenced by non-point source pollution.

Enterococcus counts were initiated in the estuary in mid-2011, as this test is now the standard used by North Carolina regulators for swimming in salt waters. Sites covered by this test include BRR, M61, M54, M35, M23 and M18. The State has a single-sample level for Tier II swimming areas in which the enterococci level in a Tier II swimming area shall not exceed a single sample of 276 enterococci per 100 milliliter of water (15A NCAC 18A .3402); the LCFRP is using this standard for the Cape Fear estuary samples in our rating system. As such, in 2014 station BRR, M61, M54, M23 and M18 all exceeded the standard on two occasions, and M35 exceeded the standard on one occasion each. Overall, elevated fecal coliform and enterococcus counts are problematic in this system, with 78% of the stations rated as Fair or Poor in 2014, higher than the previous year 2013.

2.4 - References Cited

APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, D.C.

- Benedetti, M.M., M.J. Raber, M.S. Smith and L.A. Leonard. 2006. Mineralogical indicators of alluvial sediment sources in the Cape Fear River basin, North Carolina. *Physical Geography* 27:258-281.
- Burkholder. J.M. 2002. Cyanobacteria. *In* "Encyclopedia of Environmental Microbiology" (G. Bitton, Ed.), pp 952-982. Wiley Publishers, New York.
- Dubbs, L. L. and S.C. Whalen. 2008. Light-nutrient influences on biomass, photosynthetic potential and composition of suspended algal assemblages in the middle Cape Fear River, USA. *International Review of Hydrobiology* 93:711-730.
- Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. *Computers and Geosciences* 30:501-511.
- Isaacs, J.D. 2011. Chemical investigations of the metabolites of two strains of toxic cyanobacteria. M.S. Thesis, University of North Carolina Wilmington, Wilmington, N.C.
- Lin, J. L. Xie, L.J. Pietrafesa, J. Shen, M.A. Mallin and M.J. Durako. 2006. Dissolved oxygen stratification in two microtidal partially-mixed estuaries. *Estuarine, Coastal and Shelf Science*. 70:423-437.
- Mallin, M.A. 2000. Impacts of industrial-scale swine and poultry production on rivers and estuaries. *American Scientist* 88:26-37.
- Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1997. Nutrient limitation and eutrophication potential in the Cape Fear and New River Estuaries. Report No. 313. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 1998. Effect of organic and inorganic nutrient loading on photosynthetic and heterotrophic plankton communities in blackwater rivers. Report No. 315. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1999. Alternation of factors limiting phytoplankton production in the Cape Fear Estuary. *Estuaries* 22:985-996.
- Mallin, M.A., M.H. Posey, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2000. *Environmental Assessment of the Lower Cape Fear River System, 1999-2000.* CMS Report No. 00-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 2001a. Effect of nitrogen and phosphorus loading on plankton in Coastal Plain blackwater streams. *Journal of Freshwater Ecology* 16:455-466.

- Mallin, M.A., M.H. Posey, T.E. Lankford, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2001b. *Environmental Assessment of the Lower Cape Fear River System, 2000-2001.* CMS Report No. 01-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon, M.R. McIver and S.H. Ensign. 2002a. Seeking science-based nutrient standards for coastal blackwater stream systems. Report No. 341. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., M.H. Posey, T.E. Lankford, M.R. McIver, H.A. CoVan, T.D. Alphin, M.S. Williams and J.F. Merritt. 2002b. *Environmental Assessment of the Lower Cape Fear River System*, 2001-2002. CMS Report No. 02-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver, H.A. Wells, M.S. Williams, T.E. Lankford and J.F. Merritt. 2003. *Environmental Assessment of the Lower Cape Fear River System, 2002-2003.* CMS Report No. 03-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver, S.H. Ensign and L.B. Cahoon. 2004. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. *Ecological Applications* 14:823-838.
- Mallin, M.A., M.R. McIver, T.D. Alphin, M.H. Posey and J.F. Merritt. 2005a. *Environmental Assessment of the Lower Cape Fear River System, 2003-2004.* CMS Report No. 05-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon and M.J. Durako. 2005b. Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems. *Estuarine*, *Coastal and Shelf Science* 62:55-62.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2006a. *Environmental Assessment of the Lower Cape Fear River System, 2005.* CMS Report No. 06-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., V.L. Johnson, S.H. Ensign and T.A. MacPherson. 2006b. Factors contributing to hypoxia in rivers, lakes and streams. *Limnology and Oceanography* 51:690-701.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2007. *Environmental Assessment of the Lower Cape Fear River System, 2006.* CMS Report No. 07-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2008. *Environmental Assessment of the Lower Cape Fear River System, 2007.* CMS Report No. 08-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.

- Mallin, M.A., M.R. McIver and J.F. Merritt. 2009. *Environmental Assessment of the Lower Cape Fear River System, 2008.* CMS Report No. 09-06, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2010. *Environmental Assessment of the Lower Cape Fear River System, 2009.* CMS Report No. 10-04, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2011. *Environmental Assessment of the Lower Cape Fear River System, 2010.* CMS Report No. 11-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2012. *Environmental Assessment of the Lower Cape Fear River System, 2011.* CMS Report No. 12-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2013. *Environmental Assessment of the Lower Cape Fear River System, 2012.* CMS Report No. 13-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., M.R. McIver and J.F. Merritt. 2014. *Environmental Assessment of the Lower Cape Fear River System, 2013.* CMS Report No. 14-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- U.S. EPA 1997. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices, 2nd Ed. EPA/600/R-97/072. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll *b* and phaeopigments. *Limnology and Oceanography* 39:1985-1993.

Table 2.1 Water temperature (°C) at the Lower Cape Fear River Program stations during 2014.

		HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	BBT	IC	NCF6
JAN	8.8	8.9	8.9	9.1	9.3	9.8	10.9	11.2	JAN	6.7	6.8	6.9	7.3	7.0	8.1
FEB	5.4	5.7	6.6	6.1	6.9	7.5	10.8	10.5	FEB	5.4	5.6	5.9	7.4	6.5	6.7
MAR	9.3	9.5	9.2	10.3	9.9	10.2	10.0	10.7	MAR	9.9	10.0	9.9	10.3	10.3	11.2
APR	12.7	13.2	13.3	13.4	13.8	14.0	13.2	12.8	APR	16.6	16.6	16.8	16.7	17.0	15.6
MAY	22.1	23.6	23.1	22.8	22.2	22.4	22.2	22.5	MAY	21.5	21.6	22.0	22.0	22.0	22.6
JUN	25.1	25.2	26.7	25.7	25.3	25.5	24.6	24.4	JUN	25.9	26.0	25.7	24.0	24.8	25.6
JUL	29.0	29.5	30.2	29.3	29.4	28.9	28.4	28.1	JUL	29.6	29.5	28.5	27.7	28.3	28.3
AUG	26.5	26.0	27.4	26.6	27.3	28.0	28.2	28.4	AUG	25.8	25.9	25.3	24.5	25.0	24.8
SEP	27.3	27.0	27.2	27.5	27.4	27.8	27.2	27.5	SEP	28.4	28.9	28.5	27.3	27.8	27.4
OCT	22.2	22.8	23.1	23.2	23.2	23.3	23.3	23.5	OCT	21.8	22.1	21.3	21.5	21.5	22.1
NOV	16.2	16.6	16.3	16.7	16.6	16.6	16.7	17.1	NOV	16.3	16.6	15.5	15.6	15.9	16.9
DEC	10.6	11.7	11.4	12.2	12.4	13.1	13.6	14.0	DEC	8.8	9.2	9.1	7.5	8.4	9.5
mean	17.9	18.3	18.6	18.6	18.6	18.9	19.1	19.2	mean	18.1	18.2	18.0	17.7	17.9	18.2
std dev	8.4	8.3	8.5	8.2	8.1	7.9	7.3	7.2	std dev	8.7	8.7	8.4	7.9	8.2	7.9
median	19.2	19.7	19.7	19.8	19.4	19.5	19.5	19.8	median	19.1	19.1	19.1	19.1	19.3	19.5
max	29.0	29.5	30.2	29.3	29.4	28.9	28.4	28.4	max	29.6	29.5	28.5	27.7	28.3	28.3
min	5.4	5.7	6.6	6.1	6.9	7.5	10.0	10.5	min	5.4	5.6	5.9	7.3	6.5	6.7

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM		NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	4.4	1.3	2.6	3.3	2.6	6.7	3.6	JAN	2.4	1.9	1.1	1.6	3.7	3.6	JAN	7.4	6.5	5.3	6.0	6.2	8.2
FEB	8.9	8.2	10.5	9.6	11.4	9.3	8.9	FEB	6.7	6.4	6.5	7.1	8.3	7.2	FEB	7.3	8.0	8.3	7.3	8.1	7.1
MAR	5.1	3.7	4.3	5.3	5.2	6.2	5.3	MAR	6.1	5.8	4.9	5.4	6.0	5.8	MAR	12.0	11.7	11.5	12.0	12.2	10.5
APR	12.2	13.4	14.6	14.2	15.2	15.9	14.5	APR	16.6	16.2	16.4	16.8	17.2	16.8	APR	16.5	16.6	16.4	15.3	16.0	15.5
MAY	19.4	21.4	23.7	23.9	27.3	25.2	22.1	MAY	18.6	17.7	18.8	21.3	20.2	18.6	MAY	24.0	23.0	21.5	22.0	22.3	24.3
JUN	21.3	23.0	23.5	24.9	27.5	26.6	22.5	JUN	23.5	23.8	25.0	23.8	24.0	22.9	JUN	28.1	27.8	23.5	25.4	25.6	27.0
JUL	26.1	26.0	26.8	27.5	29.7	28.3	25.6	JUL		24.3	24.2	24.1	23.4	23.3	JUL	27.4	28.2	24.3	26.3	25.3	27.9
AUG	23.0	24.1	24.7	24.9	26.6	26.4	24.5	AUG		22.7	23.1	24.6	23.5	22.8	AUG	24.9	24.8	23.5	23.9	24.2	25.8
SEP	26.2	27.9	27.9	28.2	28.5	30.1	26.3	SEP		19.7	18.7	18.2	18.1	18.0	SEP	25.5	24.4	22.4	23.5	23.2	26.3
OCT	15.5	15.5	16.2	17.0	17.6	17.8	15.7	OCT		15.2	15.9	15.7	15.0	14.9	OCT	21.6	19.7	17.4	18.0	18.9	21.9
NOV	11.8	11.9	12.4	12.5	12.1	14.9	12.6	NOV	7.2	6.5	6.4	6.8	5.2	5.8	NOV	15.5	14.4	14.2	13.6	13.4	16.0
DEC	9.7	9.6	9.7	9.9	9.8	10.7	9.1	DEC	8.4	8.3	7.7	7.5	8.9	9.2	DEC	8.6	6.2	5.1	5.2	6.3	9.1
mean	15.3	15.5	16.4	16.8	17.8	18.2	15.9	mean	11.2	14.0	14.1	14.4	14.5	14.1	mean	18.2	17.6	16.1	16.5	16.8	18.3
std dev	7.8	8.9	8.8	8.9	9.8	8.8	8.1	std dev	7.4	7.9	8.3	8.3	7.7	7.4	std dev	8.0	8.2	7.2	7.8	7.5	8.1
median	13.9	14.5	15.4	15.6	16.4	16.9	15.1	median	7.8	15.7	16.2	16.3	16.1	15.9	median	19.1	18.2	16.9	16.7	17.5	19.0
max	26.2	27.9	27.9	28.2	29.7	30.1	26.3	max	23.5	24.3	25.0	24.6	24.0	23.3	max	28.1	28.2	24.3	26.3	25.6	27.9
min	4.4	1.3	2.6	3.3	2.6	6.2	3.6	min	2.4	1.9	1.1	1.6	3.7	3.6	min	7.3	6.2	5.1	5.2	6.2	7.1

Table 2.2 Salinity (psu) at the Lower Cape Fear River Program estuarine stations during 2014.

	NAV	НВ	BRR	M61	M54	M35	M23	M18	NCF6	SC-CH
JAN	0.0	0.1	0.1	0.6	2.0	5.1	11.3	17.1	0.2	0.1
FEB	2.3	4.2	1.8	4.2	8.8	21.5	10.5	12.5	0.1	0.1
MAR	0.1	0.5	0.1	1.0	3.6	9.6	14.8	31.5	0.2	0.1
APR	0.1	0.1	0.1	0.3	1.7	7.8	20.8	31.2	0.0	0.1
MAY	0.1	0.1	0.1	2.0	3.1	5.5	11.2	13.5	0.1	0.2
JUN	0.1	0.3	3.3	7.4	9.3	13.3	23.4	26.0	1.7	9.2
JUL	7.0	8.8	9.6	13.6	17.1	24.3	31.0	34.1	0.1	4.3
AUG	0.1	0.1	0.1	0.5	2.3	12.0	23.6	29.8	0.1	0.1
SEP	3.4	3.5	7.0	9.5	12.4	23.7	26.5	32.4	0.1	3.1
OCT	0.1	0.1	0.9	5.4	7.4	12.0	22.9	24.8	3.2	6.0
NOV	4.3	5.9	9.0	14.1	17.0	22.3	28.8	31.7	8.0	9.8
DEC	0.3	3.5	2.6	7.5	8.7	15.5	23.9	30.4	0.1	1.9
mean	1.5	2.3	2.9	5.5	7.8	14.4	20.7	26.3	1.2	2.9
std dev	2.3	2.9	3.6	5.0	5.5	7.0	7.1	7.7	2.4	3.6
median	0.1	0.4	1.4	4.8	8.1	12.7	23.2	30.1	0.1	1.1
max	7.0	8.8	9.6	14.1	17.1	24.3	31.0	34.1	8.0	9.8
min	0.0	0.1	0.1	0.3	1.7	5.1	10.5	12.5	0.0	0.1

Table 2.3 Conductivity (mS/cm) at the Lower Cape Fear River Program stations during 2014.

JAN 0.1 FEB 4.2	25 7.71		1.23	3.73	9.04									
		3 45			9.04	18.95	27.84	JAN	0.10	0.11	0.11	0.09	0.10	0.18
	11 0.11	0	7.70	15.25	34.54	17.52	20.69	FEB	0.11	0.12	0.14	0.10	0.13	0.16
MAR 0.1	11 0.11	0.16	1.86	6.58	16.36	24.40	48.43	MAR	0.12	0.14	0.13	0.12	0.13	0.37
APR 0.1	12 0.14	0.16	0.63	3.21	13.51	33.24	47.85	APR	0.11	0.11	0.14	0.13	0.13	0.10
MAY 0.1	10 0.12	0.22	3.83	5.66	9.84	18.86	22.28	MAY	0.10	0.20	0.15	0.10	0.11	0.11
JUN 0.1	18 0.52	6.13	12.77	15.91	22.23	37.04	40.69	JUN	0.14	0.23	0.21	0.10	0.14	3.19
JUL 12.	.27 15.1	9 16.48	22.66	27.97	38.37	47.70	51.92	JUL	0.13	0.29	0.20	0.14	0.19	0.20
AUG 0.1	16 0.14	0.22	1.04	4.35	20.30	37.78	46.12	AUG	0.12	0.15	0.16	0.08	0.11	0.10
SEP 5.8	88 6.28	12.24	16.20	20.74	37.49	41.40	49.73	SEP	0.16	0.28	0.26	0.13	0.18	0.11
OCT 0.1	15 0.23	1.67	9.68	12.83	20.14	36.29	38.91	OCT	0.13	0.16	0.16	0.16	0.17	5.81
NOV 7.6	66 11.1	8 15.52	23.28	27.41	35.35	44.49	48.45	NOV	0.16	0.29	0.22	0.21	0.26	13.66
DEC 0.5	53 6.41	4.75	12.94	14.88	25.43	37.65	46.77	DEC	0.14	0.29	0.24	0.13	0.19	0.18
mean 2.6	63 4.01	5.09	9.48	13.21	23.55	32.94	40.81	mean	0.13	0.20	0.18	0.12	0.15	2.01
std dev 4.0	04 5.25	6.22	8.22	8.84	10.67	10.45	11.09	std dev	0.02	0.07	0.05	0.04	0.05	4.07
median 0.1	17 0.38	2.56	8.69	13.85	21.26	36.67	46.44	median	0.12	0.18	0.16	0.12	0.14	0.18
max 12.	.27 15.1	9 16.48	23.28	27.97	38.37	47.70	51.92	max	0.16	0.29	0.26	0.21	0.26	13.66
min 0.1	10 0.11	0.12	0.63	3.21	9.04	17.52	20.69	min	0.10	0.11	0.11	0.08	0.10	0.10

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM		NCF117	B210	COL	SRWC	LVC2	SC-CH
JAN	0.11	0.15	0.15	0.31	0.58	0.13	0.15	JAN	0.15	0.10	0.13	0.08	0.14	0.15	JAN	0.13	0.08	0.07	0.06	0.11	0.43
FEB	0.15	0.16	0.16	0.24	0.55	0.13	0.15	FEB	0.16	0.10	0.14	0.08	0.14	0.16	FEB	0.12	0.10	0.07	0.07	0.09	0.20
MAR	0.10	0.16	0.16	0.28	0.84	0.13	0.15	MAR	0.15	0.10	0.13	0.08	0.13	0.16	MAR	0.11	0.09	0.07	0.07	0.08	0.16
APR	0.09	0.13	0.13	0.23	0.75	0.11	0.11	APR	0.14	0.10	0.14	0.08	0.12	0.15	APR	0.10	0.09	0.06	0.07	0.07	0.17
MAY	0.10	0.17	0.16	0.45	2.25	0.12	0.13	MAY	0.12	0.07	0.09	0.06	0.09	0.13	MAY	0.13	0.07	0.07	0.06	0.11	0.46
JUN	0.10	0.20	0.19	1.16	4.79	0.24	0.19	JUN	0.15	0.10	0.21	0.08	0.12	0.19	JUN	0.18	0.09	0.07	0.08	0.13	15.71
JUL	0.16	0.17	0.16	0.53	2.43	0.15	0.14	JUL		0.09	0.12	0.10	0.13	0.20	JUL	0.14	0.10	0.07	0.09	0.09	7.88
AUG	0.09	0.12	0.13	0.31	1.87	0.10	0.10	AUG		0.10	0.15	0.19	0.12	0.12	AUG	0.09	0.07	0.07	0.07	0.06	0.22
SEP	0.13	0.19	0.18	0.45	3.66	0.18	0.17	SEP		0.08	0.12	0.08	0.13	0.18	SEP	0.11	0.09	0.07	0.10	0.09	5.72
OCT	0.13	0.17	0.16	0.31	1.04	0.16	0.17	OCT		0.09	0.15	0.08	0.14	0.19	OCT	0.13	0.09	0.07	0.07	0.11	10.65
NOV	0.14	0.21	0.19	0.68	1.59	0.21	0.40	NOV	0.16	0.12	0.24	0.10	0.15	0.23	NOV	0.21	0.12	0.06	0.09	0.15	16.67
DEC	0.13	0.19	0.18	0.27	0.57	0.16	0.17	DEC	0.16	0.11	0.17	0.09	0.15	0.19	DEC	0.16	0.11	0.07	0.08	0.14	3.59
mean	0.12	0.17	0.16	0.44	1.74	0.15	0.17	mean	0.15	0.10	0.15	0.09	0.13	0.17	mean	0.13	0.09	0.07	0.08	0.10	5.15
std dev	0.02	0.03	0.02	0.27	1.35	0.04	0.08	std dev	0.02	0.01	0.04	0.03	0.02	0.03	std dev	0.03	0.01	0.00	0.01	0.03	6.23
median	0.12	0.17	0.16	0.31	1.31	0.14	0.15	median	0.15	0.10	0.14	0.08	0.13	0.17	median	0.13	0.09	0.07	0.07	0.10	2.03
max	0.16	0.21	0.19	1.16	4.79	0.24	0.40	max	0.16	0.12	0.24	0.19	0.15	0.23	max	0.21	0.12	0.07	0.10	0.15	16.67
min	0.09	0.12	0.13	0.23	0.55	0.10	0.10	min	0.12	0.07	0.09	0.06	0.09	0.12	min	0.09	0.07	0.06	0.06	0.06	0.16

Table 2.4 pH at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	BBT	IC	NCF6
JAN	6.5	6.7	7.0	7.1	7.3	7.7	7.8	7.7	JAN	6.2	6.6	6.6	6.4	6.7	6.8
FEB	7.6	7.6	8.0	7.8	8.0	7.9	7.6	7.7	FEB	6.3	6.6	6.8	6.4	6.7	6.8
MAR	6.9	7.0	7.2	7.1	7.4	7.8	8.0	8.0	MAR	6.9	7.0	7.0	6.9	6.9	6.8
APR	6.8	6.9	7.0	7.2	7.3	7.8	8.1	8.1	APR	7.0	7.0	7.0	6.9	6.9	6.7
MAY	6.5	6.5	6.6	6.7	6.8	7.1	7.5	7.7	MAY	6.6	6.9	6.7	6.3	6.5	6.2
JUN	6.7	6.8	7.0	7.0	7.2	7.7	8.0	8.0	JUN	6.8	7.0	6.9	6.3	6.6	6.7
JUL	7.0	7.1	7.2	7.4	7.9	8.0	8.0	8.0	JUL	6.9	7.2	6.8	6.5	6.7	6.7
AUG	6.4	6.4	6.5	6.5	6.7	7.3	7.9	8.0	AUG	6.5	6.6	6.6	5.9	6.3	6.3
SEP	6.8	6.9	6.9	7.0	7.2	7.7	7.8	7.9	SEP	6.8	7.1	6.9	6.5	6.7	6.4
OCT	6.5	6.8	6.7	6.7	7.0	7.2	7.7	7.8	OCT	6.7	6.8	6.6	6.6	6.6	6.5
NOV	7.1	7.1	7.2	7.3	7.5	7.8	7.9	8.0	NOV	6.4	6.9	6.5	6.5	6.6	6.9
DEC	6.9	7.1	7.2	7.4	7.4	7.8	8.0	8.1	DEC	6.5	6.9	6.9.	6.4	6.7	6.6
mean	6.8	6.9	7.0	7.1	7.3	7.7	7.9	7.9	mean	6.6	6.9	6.8	6.5	6.7	6.6
std dev	0.3	0.3	0.4	0.4	0.4	0.3	0.2	0.2	std dev	0.3	0.2	0.2	0.3	0.2	0.2
median	6.8	6.9	7.0	7.1	7.3	7.8	7.9	8.0	median	6.7	6.9	6.8	6.5	6.7	6.7
max	7.6	7.6	8.0	7.8	8.0	8.0	8.1	8.1	max	7.0	7.2	7.0	6.9	6.9	6.9
min	6.4	6.4	6.5	6.5	6.7	7.1	7.5	7.7	min	6.2	6.6	6.5	5.9	6.3	6.2

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM		NCF117	B210	COL	SRWC	LVC2	SC-CH
JAN	5.0	5.9	6.1	6.3	6.3	6.6	6.2	JAN	6.0	6.1	6.2	6.3	6.4	6.5	JAN	6.2	5.8	3.9	5.3	6.6	6.4
FEB	5.4	6.0	6.1	6.0	6.4	6.7	6.5	FEB	6.0	6.2	6.3	6.8	6.5	6.7	FEB	6.5	6.0	3.9	5.4	6.6	6.7
MAR	5.5	6.9	7.0	6.8	6.9	7.4	7.1	MAR	7.0	6.6	6.6	6.5	6.9	7.0	MAR	6.5	6.2	4.0	5.8	6.5	6.7
APR	4.8	6.6	7.0	6.6	7.1	7.0	6.7	APR	6.9	6.7	6.7	6.5	6.8	7.0	APR	6.3	6.2	4.0	6.0	6.4	6.7
MAY	5.8	6.8	6.8	6.7	6.8	7.3	6.9	MAY	6.8	6.1	6.6	6.4	6.5	6.8	MAY	6.5	6.2	4.1	6.1	6.5	6.7
JUN	6.0	7.0	6.7	6.7	6.9	7.9	7.1	JUN	7.1	6.9	7.0	6.2	7.0	7.2	JUN	6.6	6.4	4.1	6.4	6.8	7.0
JUL	6.7	6.7	6.5	6.5	6.7	7.6	7.0	JUL		6.6	6.5	6.3	7.1	7.4	JUL	6.6	6.4	4.1	6.5	6.7	6.9
AUG	5.2	6.4	6.5	6.2	6.8	6.9	6.4	AUG		6.6	6.6	6.5	6.4	6.4	AUG	6.2	5.7	3.9	5.2	6.0	5.6
SEP	6.3	6.9	6.8	6.9	6.9	8.0	7.3	SEP		6.4	6.4	6.1	6.9	7.1	SEP	6.3	6.1	4.0	6.4	6.6	6.6
OCT	5.7	6.3	6.5	6.6	6.7	7.4	6.8	OCT		6.0	6.5	5.7	6.5	6.9	OCT	6.3	6.1	3.9	6.0	6.9	6.5
NOV	5.8	6.4	6.4	6.5	6.5	7.3	7.0	NOV	6.4	6.5	6.6	5.9	6.6	7.0	NOV	6.6	6.1	3.7	5.9	6.8	7.1
DEC	5.5	6.1	6.2	6.3	6.5	7.0	6.6	DEC	6.4	6.5	6.4	6.1	6.7	6.8	DEC	6.3	6.0	3.9	6.4	6.8	6.4
mean	5.6	6.5	6.6	6.5	6.7	7.3	6.8	mean	6.6	6.4	6.5	6.3	6.7	6.9	mean	6.4	6.1	4.0	6.0	6.6	6.6
std dev	0.5	0.4	0.3	0.3	0.2	0.4	0.3	std dev	0.4	0.3	0.2	0.3	0.2	0.3	std dev	0.2	0.2	0.1	0.5	0.2	0.4
median	5.6	6.5	6.5	6.6	6.8	7.3	6.9	median	6.6	6.5	6.6	6.3	6.7	7.0	median	6.4	6.1	4.0	6.0	6.6	6.7
max	6.7	7.0	7.0	6.9	7.1	8.0	7.3	max	7.1	6.9	7.0	6.8	7.1	7.4	max	6.6	6.4	4.1	6.5	6.9	7.1
min	4.8	5.9	6.1	6.0	6.3	6.6	6.2	min	6.0	6.0	6.2	5.7	6.4	6.4	min	6.2	5.7	3.7	5.2	6.0	5.6

Table 2.5 Dissolved Oxygen (mg/l) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	BBT	IC	NCF6
JAN	10.1	10.2	10.2	10.3	10.6	10.6	10.1	9.7	JAN	11.5	11.1	11.0	10.4	10.6	10.5
FEB	12.9	12.4	12.7	12.5	12.2	11.3	9.7	9.7	FEB	13.7	13.3	13.2	11.6	12.7	12.0
MAR	9.7	9.6	9.7	9.6	10.0	9.9	9.9	8.8	MAR	11.2	11.0	11.0	10.7	10.7	9.7
APR	9.5	9.2	9.3	9.1	9.3	9.4	9.4	9.1	APR	9.1	8.8	8.7	8.5	8.1	7.2
MAY	5.2	5.3	5.4	5.3	5.5	6.2	7.0	7.2	MAY	7.4	7.0	6.6	4.7	5.7	4.2
JUN	4.6	4.6	6.5	5.5	6.1	6.9	7.3	7.2	JUN	6.1	6.0	5.2	4.6	4.6	5.1
JUL	4.6	4.7	6.2	6.5	8.3	7.8	6.6	6.5	JUL	6.6	6.1	4.4	4.1	4.2	4.8
AUG	3.8	3.6	3.9	3.7	4.1	5.0	5.8	6.3	AUG	5.2	5.3	5.0	4.0	4.5	4.1
SEP	3.5	3.7	3.5	3.9	4.2	5.2	6.1	5.7	SEP	5.4	5.2	3.6	3.3	3.3	3.4
OCT	4.8	4.7	4.8	4.9	5.0	5.7	6.3	6.6	OCT	6.6	6.3	4.8	4.9	4.6	4.9
NOV	6.8	7.3	7.2	7.3	7.6	8.1	8.3	8.1	NOV	8.3	7.9	6.9	7.2	6.8	7.5
DEC	8.7	8.5	8.6	8.3	8.5	8.7	8.4	8.0	DEC	10.5	9.9	9.5	9.6	9.3	8.8
mean	7.0	7.0	7.3	7.2	7.6	7.9	7.9	7.7	mean	8.5	8.2	7.5	7.0	7.1	6.9
std dev	3.1	2.9	2.8	2.8	2.7	2.1	1.6	1.4	std dev	2.7	2.7	3.1	3.0	3.1	2.9
median	6.0	6.3	6.9	6.9	8.0	8.0	7.8	7.6	median	7.9	7.5	6.8	6.1	6.3	6.2
max	12.9	12.4	12.7	12.5	12.2	11.3	10.1	9.7	max	13.7	13.3	13.2	11.6	12.7	12.0
min	3.5	3.6	3.5	3.7	4.1	5.0	5.8	5.7	min	5.2	5.2	3.6	3.3	3.3	3.4

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM		NCF117	B210	COL	SRWC	LVC2	SC-CH
JAN	10.2	13.1	13.3	11.3	11.6	12.6	12.5	JAN	12.8	12.8	13.0	13.3	13.6	12.7	JAN	11.0	11.1	9.9	11.1	9.4	10.7
FEB	11.4	10.7	11.2	10.3	10.7	12.8	11.6	FEB	12.2	12.3	11.2	12.0	11.7	12.8	FEB	10.2	10.9	8.7	10.6	10.6	11.7
MAR	11.7	12.0	13.0	12.1	12.8	12.8	11.8	MAR	11.5	11.7	11.1	12.1	12.2	12.3	MAR	9.2	8.9	6.7	8.9	7.9	9.7
APR	7.0	7.6	9.9	8.8	11.8	10.2	8.3	APR	8.2	8.4	6.3	7.0	8.8	8.7	APR	7.1	7.9	6.2	8.9	7.6	7.8
MAY	6.1	5.7	5.5	5.0	4.8	7.9	6.7	MAY	7.3	6.7	6.8	6.1	8.1	7.6	MAY	4.5	5.0	5.2	6.3	2.3	5.3
JUN	4.7	6.2	1.4	3.7	9.3	8.6	6.6	JUN	6.5	6.8	6.1	1.5	7.4	6.3	JUN	4.6	4.3	4.8	5.6	2.1	4.7
JUL	2.3	5.4	2.3	2.7	6.0	8.9	6.4	JUL		6.8	5.3	0.7	8.1	7.0	JUL	4.1	4.9	5.1	5.7	4.3	4.4
AUG	4.4	5.1	4.1	3.3	5.8	7.1	4.8	AUG		7.1	5.7	1.3	7.0	7.0	AUG	4.1	5.1	4.6	6.4	5.6	4.5
SEP	4.3	5.2	1.9	3.3	4.7	9.1	5.5	SEP		7.4	6.1	7.1	8.4	7.3	SEP	3.0	3.8	4.7	6.3	4.9	3.8
OCT	7.1	8.2	6.6	7.6	8.2	10.8	9.3	OCT		9.0	7.3	5.6	9.5	8.0	OCT	3.9	5.8	6.5	7.8	5.1	4.8
NOV	3.8	8.8	3.8	7.6	6.6	9.0	8.7	NOV	10.4	11.4	10.1	4.1	11.2	9.3	NOV	5.9	7.0	6.5	8.5	5.6	7.1
DEC	7.6	8.7	8.2	7.7	7.9	11.1	10.1	DEC	10.8	10.8	9.9	8.2	10.9	10.0	DEC	7.8	10.3	9.8	11.4	9.2	9.0
mean	6.7	8.1	6.8	6.9	8.4	10.1	8.5	mean	10.0	9.3	8.2	6.6	9.7	9.1	mean	6.3	7.1	6.6	8.1	6.2	7.0
std dev	3.1	2.7	4.3	3.3	2.9	2.0	2.6	std dev	2.3	2.4	2.6	4.3	2.1	2.4	std dev	2.7	2.7	1.9	2.1	2.7	2.8
median	6.6	7.9	6.1	7.6	8.1	9.7	8.5	median	10.6	8.7	7.1	6.6	9.2	8.4	median	5.3	6.4	6.4	8.2	5.6	6.2
max	11.7	13.1	13.3	12.1	12.8	12.8	12.5	max	12.8	12.8	13.0	13.3	13.6	12.8	max	11.0	11.1	9.9	11.4	10.6	11.7
min	2.3	5.1	1.4	2.7	4.7	7.1	4.8	min	6.5	6.7	5.3	0.7	7.0	6.3	min	3.0	3.8	4.6	5.6	2.1	3.8

Table 2.6 Field Turbidity (NTU) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	BBT	IC	NCF6
JAN	58	47	46	27	17	5	1	4	JAN	32	35	35	8	21	8
FEB	15	15	10	7	6	14	8	8	FEB	7	9	9	1	5	3
MAR	14	13	16	12	14	8	5	11	MAR	12	12	10	7	6	8
APR	6	6	13	23	18	6	6	4	APR	17	17	10	9	6	4
MAY	6	7	7	5	7	5	1	1	MAY	12	12	16	7	12	2
JUN	6	5	4	3	3	2	2	2	JUN	10	13	13	7	7	5
JUL	9	4	7	3	5	2	0	0	JUL	3	5	7	4	7	14
AUG	6	10	10	9	6	2	2	4	AUG	16	8	11	4	8	3
SEP	11	13	8	3	7	3	2	4	SEP	5	6	11	5	7	2
OCT	7	0	0	0	0	0	0	0	OCT	7	4	1	1	4	0
NOV	5	3	3	2	2	0	0	1	NOV	5	6	4	2	6	3
DEC	9	5	6	4	2	1	1	5	DEC	16	12	16	3	8	4
mean	13	11	11	8	7	4	2	4	mean	12	12	12	5	8	5
std dev	15	12	12	9	6	4	3	3	std dev	8	8	8	3	5	4
median	8	7	8	5	6	3	2	4	median	11	11	11	5	7	4
max	58	47	46	27	18	14	8	11	max	32	35	35	9	21	14
min	5	0	0	0	0	0	0	0	min	3	4	1	1	4	0

ĺ	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM		NCF117	B210	COL	SRWC	LVC2	SC-CH
JAN	2	1	0	0	0	0	0	JAN	1	0	0	0	2	5	JAN	2	2	0	2	0	14
FEB	2	0	0	0	3	0	2	FEB	2	2	0	0	2	2	FEB	2	0	0	0.0	1	5
MAR	6	0	0	0	3	1	1	MAR	1	0	0	0	4	1	MAR	4	0	0	0	3	5
APR	5	0	0	0	0	4	3	APR	4	0	0	0	2	0	APR	2	0	0	0	1	8
MAY	12	5	0	2	8	1	4	MAY	3	0	0	0	6	3	MAY	3	4	2	2	6	13
JUN	9	2	0	1	6	20	2	JUN	1	0	0	0	1	2	JUN	0	1	0	0	4	4
JUL	2	2	0	0	3	0	1	JUL		10	2	10	1	5	JUL	1	0	0	0	3	10
AUG	2	0	0	0	2	3	3	AUG		9	4	81	10	10	AUG	2	0	0	0	0	7
SEP	7	4	4	1	14	2	5	SEP		2	2	2	11	3	SEP	0	1	0	1	4	14
OCT	0	0	0	0	0	0	0	OCT		1	0	1	1	1	OCT	0	0	0	0	1	4
NOV	4	1	0	0	7	2	0	NOV	0	0	0	0	0	0	NOV	1	1	0	0	4	7
DEC	2	0	0	0	1	1	1	DEC	0	0	0	0	0	1	DEC	1	0	0	0	2	1
mean	4	1	0	0	4	3	2	mean	2	2	1	8	3	3	mean	2	1	0	0	2	8
std dev	4	2	1	1	4	6	2	std dev	1	4	1	23	4	3	std dev	1	1	1	1	2	4
median	3	1	0	0	3	1	2	median	1	0	0	0	2	2	median	2	0	0	0	3	7
max	12	5	4	2	14	20	5	max	4	10	4	81	11	10	max	4	4	2	2	6	14
min	0	0	0	0	0	0	0	min	0	0	0	0	0	0	min	0	0	0	0	0	1

Table 2.7 Total Suspended Solids (mg/L) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18	_		NC11	AC	DP	IC	NCF6
JAN	54.3	45.3	30.0	22.7	17.2	17.0	9.1	15.5		JAN	23.8	25.6	25.8	13.2	9.4
FEB	17.3	19.4	11.4	9.9	14.0	34.3	11.9	12.1		FEB	5.7	8.0	10.0	4.9	7.0
MAR	9.9	6.9	9.4	9.3	14.6	11.8	13.7	20.7		MAR	15.6	14.8	12.0	7.3	12.2
APR	7.1	8.6	12.2	30.0	24.0	13.8	24.0	23.6		APR	19.9	23.3	14.2	8.0	6.4
MAY	6.5	7.8	8.8	8.1	9.2	9.7	8.8	8.9		MAY	15.6	14.7	16.9	13.0	8.6
JUN	5.5	3.8	9.0	8.4	9.3	10.1	11.5	17.8		JUN	9.0	13.4	19.7	8.6	9.9
JUL	12.3	13.6	15.8	13.2	18.0	16.2	16.6	1.3		JUL	5.9	7.3	12.4	16.2	26.9
AUG	7.9	13.8	13.4	19.3	11.2	10.2	10.9	20.2		AUG	12.4	8.0	13.2	9.4	5.2
SEP	17.7	24.4	17.4	10.0	20.4	16.4	15.9	18.1		SEP	5.0	6.7	10.9	14.1	3.9
OCT	5.4	4.1	3.9	5.3	6.5	6.4	11.4	12.7		OCT	5.8	3.8	3.6	4.7	4.6
NOV	12.6	10.1	13.1	15.1	9.9	12.6	14.4	12.4		NOV	4.9	5.9	4.8	9.8	9.0
DEC	14.3	5.6	11.5	9.6	7.6	7.2	7.0	16.3	-	DEC	1.4	12.6	15.9	9.6	4.3
mean	14.2	13.6	13.0	13.4	13.5	13.8	12.9	15.0	•	mean	10.4	12.0	13.3	9.9	7.9
std dev	13.3	11.8	6.4	7.2	5.5	7.3	4.5	6.0		std dev	7.0	6.9	6.1	3.6	3.0
median	11.1	9.4	11.9	10.0	12.6	12.2	11.7	15.9		median	7.5	10.3	12.8	9.5	7.0
max	54.3	45.3	30.0	30.0	24.0	34.3	24.0	23.6		max	23.8	25.6	25.8	16.2	12.2
min	5.4	3.8	3.9	5.3	6.5	6.4	7.0	1.3		min	1.4	3.8	3.6	4.7	4.3

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM
JAN		1.4		1.4	1.6	1.5	3.1	JAN			1.4			
FEB		1.4		1.4	3.7	3.3	6.8	FEB			1.8			
MAR		1.5		1.4	4.0	1.4	3.1	MAR			1.4			
APR		3.6		3.0	5.3	5.4	8.1	APR			4.3			
MAY		7.5		4.2	7.8	1.5	7.1	MAY			1.4			
JUN		3.9		4.3	11.2	7.2	3.6	JUN			1.4			
JUL		9.1		4.6	12.0	1.4	4.5	\mathbf{JUL}			7.0			
AUG		2.9		2.9	3.9	8.1	6.3	AUG			10.2			
SEP		5.6		3.3	8.0	1.5	1.4	SEP			4.8			
OCT		1.4		1.4	3.1	1.5	1.4	OCT			3.2			
NOV		1.5		1.4	20.0	1.5	1.4	NOV			1.4			
DEC		1.3		1.3	6.6	1.3	4.6	DEC			1.4			
mean		3.4		2.6	7.3	3.0	4.3	mean			3.3			
std dev		2.7		1.3	5.1	2.5	2.4	std dev			2.8			
median		2.2		2.2	6.0	1.5	4.1	median			1.6			
max		9.1		4.6	20.0	8.1	8.1	max			10.2			
min		1.3		1.3	1.6	1.3	1.4	min			1.4			

	NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	3.9	1.4			1.4	19.5
FEB	3.5	1.4			1.4	8.9
MAR	4.0	1.4			3.2	9.2
APR	1.4	14.7			5.7	11.8
MAY	2.8	3.8			4.6	16.3
JUN	1.4	1.4			3.5	12.2
JUL	4.0	1.3			4.2	20.3
AUG	3.9	3.4			6.6	13.8
SEP	4.0	1.4			5.1	23.7
OCT	1.4	1.4			4.4	11.2
NOV	3.0	1.4			1.4	15.2
DEC	1.4	1.4			1.4	3.8
mean	2.9	2.9			3.6	13.8
std dev	1.2	3.8			1.8	5.6
median	3.3	1.4			3.9	13.0
max	4.0	14.7			6.6	23.7
min	1.4	1.3			1.4	3.8

Table 2.8 Light Attenuation (k) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	BBT	IC	NCF6
JAN	5.55	6.24	5.68	4.10	3.77	2.74	2.04	2.51	JAN	3.87	4.15	4.03	2.92	3.46	3.65
FEB							2.16	2.08	FEB	2.02	2.28	2.18	2.11	2.05	2.84
MAR	3.22	2.82	3.21	3.38	3.01	2.12	2.26	1.76	MAR	2.89	2.49	2.46	1.94	1.25	2.36
APR			3.90		3.79	2.64	1.77	1.29	APR	2.57	2.61	2.24	2.28	2.43	3.30
MAY	4.46	5.13	5.13	4.29	4.08	3.51	2.43	2.20	MAY	4.30	4.60	4.48	5.69	4.33	5.48
JUN	3.39	3.30	3.89	2.92	3.12	1.95	1.37	1.36	JUN	2.96	3.55	3.80	4.89		4.52
JUL	2.58	2.97	2.17	2.00	2.07	1.30	0.08	0.67	JUL	2.00	2.39	3.17	3.17	3.71	5.55
AUG	4.20	5.60	6.37	4.48	4.31	2.64	1.67	1.58	AUG	3.10	2.65	3.27	4.40	3.97	3.59
SEP	5.64	4.94	4.45	4.33	4.25	2.27	2.17	1.86	SEP	2.07	2.37	3.41	4.47	3.86	6.42
OCT	3.59	3.51	3.45	3.28	3.34	2.45	1.76	1.58	OCT	2.48	2.56	3.40	3.29	3.26	3.32
NOV	3.24	3.15	2.84	3.05	2.45	2.15	1.38	1.50	NOV	2.11	2.51	3.06	2.90	3.16	3.44
DEC	3.51	3.69	3.72	3.03	3.00	2.28	1.55	1.80	DEC						
mean	3.94	4.14	4.07	3.49	3.38	2.37	1.72	1.68	mean	2.76	2.92	3.23	3.46	3.15	4.04
std dev	1.02	1.23	1.25	0.80	0.73	0.55	0.62	0.48	std dev	0.77	0.80	0.73	1.23	0.96	1.28
max	5.64	6.24	6.37	4.48	4.31	3.51	2.43	2.51	max	4.30	4.60	4.48	5.69	4.33	6.42
min	2.58	2.82	2.17	2.00	2.07	1.30	0.08	0.67	min	2.00	2.28	2.18	1.94	1.25	2.36

Table 2.9 Total Nitrogen ($\mu g/l$) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	IC	NCF6
JAN	1,690	1,470	1,360	1,040	1,730	1,740	2,210	1,360	JA	1,430	920	1,540	1,360	1,560
FEB	1,090	910	1,000	830	770	430	650	790	FE	1,370	1,390	1,530	1,310	330
MAR	970	940	980	1,120	810	820	630	290	MA	R 490	510	510	410	400
APR	890	860	810	790	880	600	350	50	AP	1,360	1,170	1,190	1,310	900
MAY	1,110	1,120	1,190	870	950	950	280	840	MA	Y 1,040	1,140	1,130	990	980
JUN	1,440	1,100	1,050	1,310	1,020	560	50	300	JU	1,400	1,400	1,300	1,170	1,110
JUL	1,000	880	780	800	490	400	400	100	JU	1,480	1,740	1,600	1,450	1,160
AUG	1,360	1,230	1,250	1,330	1,180	670	640	430	AU	G 1,350	1,330	1,300	1,270	1,080
SEP	920	770	730	620	510	280	50	200	SE	1,310	1,380	1,570	1,200	810
OCT	520	500	600	500	500	300	50	50	oc	Γ 1,260	1,150	750	660	610
NOV	1,300	1,050	1,040	1,020	630	520	160	300	NO	7 2,220	2,020	1,320	1,340	860
DEC	1,090	1,040	1,000	1,040	1,060	830	260	380	DE	2,020	1,920	1,760	1,250	890
mean	1,115	989	983	939	878	675	478	424	mea	n 1,394	1,339	1,292	1,143	891
std dev	303	243	223	253	354	397	591	389	std d	e v 432	420	363	311	338
median	1,090	990	1,000	945	845	580	315	300	medi	an 1,365	1,355	1,310	1,260	895
max	1,690	1,470	1,360	1,330	1,730	1,740	2,210	1,360	ma	2,220	2,020	1,760	1,450	1,560
min	520	500	600	500	490	280	50	50	mi	490	510	510	410	330
•	=									-				

	ANC	SAR	GS	NC403	PB	LRC	ROC	<u> </u>		6RC	LCO	GCO	SR	BRN	HAM
JAN	3,530	1,910	1,170	3,890	4,940	4,670	3,600	J	JAN	1,900	1,720	1,590	720	1,950	2,420
FEB	2,100	2,180	1,250	3,180	2,450	1,300	1,870	F	FEB	2,710	2,210	1,800	540	1,480	1,120
MAR	1,350	1,760	1,180	3,730	2,540	910	1,920	M	IAR	2,500	1,970	1,570	660	1,370	1,140
APR	2,420	1,440	920	3,010	1,850	2,590	1,630	A	APR	2,630	1,860	1,470	1,180	1,500	1,560
MAY	1,550	1,080	940	1,820	1,130	980	2,280	M	AAY	1,280	900	1,000	900	1,390	1,160
JUN	1,620	1,370	1,030	1,260	1,340	550	4,810	J	JUN	1,420	1,040	1,320	660	930	2,820
JUL	1,400	1,050	1,020	1,220	750	120	2,550	J	JUL		1,220	990	1,120	1,090	560
AUG	2,000	1,020	650	1,660	880	980	1,320	A	AUG		1,310	930	2,010	940	1,190
SEP	1,380	1,070	800	1,050	2,000	990	2,670	S	SEP		850	730	1,050	790	560
OCT	980	270	50	860	530	140	3,650	o	OCT		310	350	240	330	240
NOV	1,040	980	600	1,920	2,220	540	9,400	N	VOV	1,520	390	1,150	370	610	50
DEC	2,580	820	2,800	3,640	4,830	780	1,750	<u>D</u>	DEC	1,770	860	850	540	1,180	780
mean	1,829	1,246	1,034	2,270	2,122	1,213	3,121	m	nean	1,966	1,220	1,146	833	1,130	1,133
std dev	738	521	646	1,140	1,453	1,262	2,223	std	d dev	572	613	418	472	443	822
median	1,585	1,075	980	1,870	1,925	945	2,415	me	edian	1,835	1,130	1,075	690	1,135	1,130
max	3,530	2,180	2,800	3,890	4,940	4,670	9,400	n	max	2,710	2,210	1,800	2,010	1,950	2,820
min	980	270	50	860	530	120	1,320	n	min	1,280	310	350	240	330	50

	NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	2,530	2,160	2,500	1,760	1,560	1,510
FEB	1,690	1,330	620	640	550	1,240
MAR	1,490	1,160	600	650	400	980
APR	1,550	1,320	1,000	810	290	1,050
MAY	1,470	1,100	1,430	950	170	1,010
JUN	1,290	1,290	1,400	600	740	780
JUL	1,240	1,240	1,330	1,160	1,200	1,160
AUG	1,310	1,090	1,130	900	740	770
SEP	560	590	930	960	540	740
OCT	300	500	700	670	240	1,350
NOV	840	880	820	760	750	670
DEC	1,920	770	900	650	560	2,110
mean	1,349	1,119	1,113	876	645	1,114
$std \; dev \\$	596	432	523	326	402	407
median	1,390	1,130	965	785	555	1,030
max	2,530	2,160	2,500	1,760	1,560	2,110
min	300	500	600	600	170	670

Table 2.10 Nitrate/Nitrite (μ g/l) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18	_		NC11	AC	DP	IC	NCF6
JAN	590	570	560	240	630	540	410	260		JAN	330	320	640	560	260
FEB	690	610	700	530	470	230	350	490		FEB	1,070	990	1,130	1,010	30
MAR	570	540	580	620	510	420	330	90		MAR	490	510	510	410	400
APR	490	460	410	390	380	300	150	20		APR	660	470	490	410	10
MAY	410	420	390	370	350	350	280	240		MAY	440	440	430	290	180
JUN	540	400	350	310	320	160	30	10		JUN	800	700	600	470	510
JUL	400	380	380	300	90	10	10	10		JUL	880	840	700	550	260
AUG	460	330	350	330	380	270	140	30		AUG	550	530	400	370	180
SEP	320	270	230	220	210	80	50	10		SEP	710	680	770	500	110
OCT	20	10	10	10	10	10	70	30		OCT	1,160	750	350	260	110
NOV	600	450	440	320	330	220	60	10		NOV	1,420	1,320	720	640	260
DEC	590	540	600	540	560	430	260	80		DEC	1,320	1,020	960	550	190
mean	473	415	417	348	353	252	178	107		mean	819	714	642	502	208
std dev	177	162	184	163	183	168	141	150		std dev	356	289	233	196	144
median	515	435	400	325	365	250	145	30		median	755	690	620	485	185
max	690	610	700	620	630	540	410	490		max	1,420	1,320	1,130	1,010	510
min	20	10	10	10	10	10	10	10		min	330	320	350	260	10

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM
JAN	1,030	1,210	770	3,390	4,440	1,270	1,600	JAN	1,400	1,220	1,090	120	1,250	1,320
FEB	1,400	1,780	1,050	2,880	1,950	1,000	1,370	FEB	1,910	1,710	1,400	240	1,080	820
MAR	450	1,160	580	3,130	1,940	610	1,520	MAR	1,700	1,470	1,170	160	870	740
APR	920	840	320	2,510	1,250	1,090	930	APR	1,230	660	370	80	500	460
MAY	150	280	40	820	130	180	1,380	MAY	580	300	200	100	390	460
JUN	220	470	30	460	40	50	3,410	JUN	920	440	720	60	430	120
JUL	100	250	20	320	50	120	1,450	JUL		220	90	20	790	160
AUG	200	220	50	860	180	180	420	AUG		310	30	110	140	290
SEP	80	270	10	450	100	190	1,770	SEP		150	130	50	290	160
OCT	180	70	10	760	330	140	2,950	OCT		110	150	40	230	40
NOV	40	480	10	1,620	1,620	40	8,300	NOV	1,220	190	850	70	610	10
DEC	680	120	10	2,840	3,830	180	1,050	DEC	1,070	360	250	40	580	180
mean	454	596	242	1,670	1,322	421	2,179	mean	1,254	595	538	91	597	397
std dev	449	536	362	1,191	1,518	449	2,095	std dev	423	555	484	62	342	391
median	210	375	35	1,240	790	180	1,485	median	1,225	335	310	75	540	235
max	1,400	1,780	1,050	3,390	4,440	1,270	8,300	max	1,910	1,710	1,400	240	1,250	1,320
min	40	70	10	320	40	40	420	min	580	110	30	20	140	10

	NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	730	560	10	260	160	410
FEB	1,190	1,030	20	340	250	640
MAR	890	760	10	250	200	380
APR	550	420	10	110	90	250
MAY	470	200	30	150	170	410
JUN	390	490	10	10	340	380
JUL	340	240	30	460	100	260
AUG	410	390	30	300	140	170
SEP	60	90	30	560	40	140
OCT	10	10	10	70	40	50
NOV	140	280	20	260	250	270
DEC	320	270	10	150	160	210
mean	458	395	18	243	162	298
std dev	344	287	9	160	89	157
median	400	335	15	255	160	265
max	1,190	1,030	30	560	340	640
min	10	10	10	10	40	50

Table 2.11 Ammonia ($\mu g/l$) at the Lower Cape Fear River Program stations during 2014.

10 10 10

min 10

	NAV	нв	BRR	M61	M54	M35	M23	M18			NC11	AC	DP	IC	NCF6							
JAN	30	30	40	40	130	40	40	10		JAN	80	90	80	50	40							
FEB	120	120	100	180	140	60	60	70		FEB	50	50	50	50	30							
MAR	40	30	30	50	90	20	10	10		MAR	20	30	30	20	40							
APR	30	30	20	50	80	50	10	10		APR	50	70	70	70	60							
MAY	130	140	160	190	150	170	80	50		MAY	110	280	160	120	60							
JUN	70	70	20	40	40	10	10	10		JUN	90	220	210	160	60							
JUL	100	110	40	30	10	10	10	10		JUL	30	160	110	120	20							
AUG	80	60	60	70	100	30	10	10		AUG	260	120	140	90	40							
SEP	40	60	210	330	40	30	30	120		SEP	20	20	110	70	10							
OCT	40	40	40	40	130	50	40	20		OCT	40	80	70	40	20							
NOV	60	80	70	70	70	40	10	10		NOV	30	110	70	50	40							
DEC	50	50	40	70	80	50	20	10		DEC	60	150	130	80	30							
mean	66	68	69	97	88	47	28	28		mean	70	115	103	77	38							
std dev	35	37	59	91	44	42	23	35		std dev	66	77	51	40	17							
median	55	60	40	60	85	40	15	10		median	50	100	95	70	40							
max	130	140	210	330	150	170	80	120		max	260	280	210	160	60							
min	30	30	20	30	10	10	10	10		min	20	20	30	20	10							
Ī	ANC	SAR	CC	NC403	PB	LRC	ROC			6RC	1.00	GCO	SR	BRN	HAM		NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	130	10	GS 10	60	210	30	50	ı	JAN	70	10	10	10	90	20	JAN	10	10	10	20	60	50 50
FEB	180	10	10	10	30	10	70		FEB	420	10	10	10	20	10	FEB	10	10	10	10	10	10
MAR	90	20	10	20	40	30	30		MAR	90	20	10	10	90	30	MAR	100	10	10	10	40	30
APR	170	30	20	130	40	100	90		APR	100	30	80	10	50	110	APR	50	10	10	10	10	40
MAY	90	10	10	80	460	50	20		MAY	40	20	20	10	40	30	MAY	40	20	60	20	20	60
JUN	200	30	90	110	50	60	30		JUN	40	50	60	60	40	70	JUN	40	100	390	90	140	170
JUL	180	60	70	130	50	40	50		JUL		40	50	160	30	50	JUL	60	50	90	40	90	80
AUG	120	60	70	90	160	180	180		AUG		70	390	1,000	130	150	AUG	80	40	60	60	50	90
SEP	50	60	110	80	70	40	60		SEP		20	20	30	40	40	SEP	30	20	70	10	10	10
OCT	110	50	30	70	120	50	60		OCT		20	30	10	20	20	OCT	60	40	70	50	130	80
NOV	90	20	10	70	10	10	10		NOV	10	10	10	10	10	10	NOV	40	10	10	10	290	90
DEC	10	10	10	130	50	10	10		DEC	10	10	10	10	10	10	DEC	40	10	20	10	140	60
mean	118	31	38	82	108	51	55		mean	98	26	58	111	48	46	mean	47	28	68	28	83	64
std dev	57	21	37	40	126	48	46		$std \; dev \\$	135	19	107	283	37	44	std dev	26	27	106	26	83	44
median	115	25	15	80	50	40	50		median	55	20	20	10	40	30	median	40	15	40	15	55	60
max	200	60	110	130	460	180	180		max	420	70	390	1,000	130	150	max	100	100	390	90	290	170

10 10 10 10 10

10 10 10 10 10

Table 2.12 Total Kjeldahl Nitrogen (μ g/l) at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	IC	NCF6
JAN	1100	900	800	800	1100	1200	1800	1100	JAN	1100	600	900	800	1,300
FEB	400	300	300	300	300	200	300	300	FEB	300	400	400	300	300
MAR	400	400	400	500	300	400	300	200	MAR	50	50	50	50	50
APR	400	400	400	400	500	300	200	50	APR	700	700	700	900	900
MAY	700	700	800	500	600	600	50	600	MAY	600	700	700	700	800
JUN	900	700	700	1000	700	400	50	300	JUN	600	700	700	700	600
JUL	600	500	400	500	400	400	400	100	JUL	600	900	900	900	900
AUG	900	900	900	1000	800	400	500	400	AUG	800	800	900	900	900
SEP	600	500	500	400	300	200	50	200	SEP	600	700	800	700	700
OCT	500	500	600	500	500	300	50	50	OCT	100	400	400	400	500
NOV	700	600	600	700	300	300	100	300	NOV	800	700	600	700	600
DEC	500	500	400	500	500	400	50	300	DEC	700	900	800	700	700
mean	642	575	567	592	525	425	321	325	mear	579	629	654	646	688
std dev	227	191	197	231	245	267	491	289	std de	v 300	242	257	264	321
median	600	500	550	500	500	400	150	300	media	n 600	700	700	700	700
max	1,100	900	900	1,000	1,100	1,200	1,800	1,100	max	1,100	900	900	900	1,300
min	400	300	300	300	300	200	50	50	min	50	50	50	50	50

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM
JAN	2500	700	400	500	500	3400	2000	JAN	500	500	500	600	700	1100
FEB	700	400	200	300	500	300	500	FEB	800	500	400	300	400	300
MAR	900	600	600	600	600	300	400	MAR	800	500	400	500	500	400
APR	1,500	600	600	500	600	1,500	700	APR	1,400	1,200	1,100	1,100	1,000	1,100
MAY	1400	800	900	1000	1000	800	900	MAY	700	600	800	800	1000	700
JUN	1400	900	1000	800	1300	500	1400	JUN	500	600	600	600	500	2700
JUL	1300	800	1000	900	700	50	1100	JUL		1000	900	1100	300	400
AUG	1800	800	600	800	700	800	900	AUG		1000	900	1900	800	900
SEP	1300	800	800	600	1900	800	900	SEP		700	600	1000	500	400
OCT	800	200	50	100	200	50	700	OCT		200	200	200	100	200
NOV	1000	500	600	300	600	500	1100	NOV	300	200	300	300	50	50
DEC	1900	700	2800	800	1000	600	700	DEC	700	500	600	500	600	600
mean	1,375	650	796	600	800	800	942	mean	713	625	608	742	538	738
std dev	514	202	696	273	449	909	432	std dev	327	308	271	478	307	704
median	1,350	700	600	600	650	550	900	median	700	550	600	600	500	500
max	2,500	900	2,800	1,000	1,900	3,400	2,000	max	1,400	1,200	1,100	1,900	1,000	2,700
min	700	200	50	100	200	50	400	min	300	200	200	200	50	50

	NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	1800	1600	2500	1500	1400	1100
FEB	500	300	600	300	300	600
MAR	600	400	600	400	200	600
APR	1,000	900	1,000	700	200	800
MAY	1000	900	1400	800	50	600
JUN	900	800	1400	600	400	400
JUL	900	1000	1300	700	1100	900
AUG	900	700	1100	600	600	600
SEP	500	500	900	400	500	600
OCT	300	500	700	600	200	1300
NOV	700	600	800	500	500	400
DEC	1600	500	900	500	400	1900
mean	892	725	1,100	633	488	817
std dev	440	352	524	308	394	434
median	900	650	950	600	400	600
max	1,800	1,600	2,500	1,500	1,400	1,900
min	300	300	600	300	50	400

Table 2.13 Total Phosphorus $(\mu g/l)$ at the Lower Cape Fear River Program stations during 2014.

	NAV	НВ	BRR	M61	M54	M35	M23	M18	<u></u>	NC11	AC	DP	IC	NCF6
JAN	120	190	100	110	80	60	100	40	JAN	120	130	110	60	70
FEB	110	100	150	80	70	70	60	40	FEB	150	140	140	100	70
MAR	90	90	90	80	70	60	50	50	MAR	10	40	40	40	40
APR	40	40	50	60	50	30	30	30	APR	60	50	60	50	70
MAY	110	100	130	100	110	90	70	60	MAY	140	160	160	150	130
JUN	130	110	110	70	130	50	30	30	JUN	100	100	100	90	90
JUL	120	130	120	80	90	40	30	30	JUL	160	190	160	140	180
AUG	120	150	120	120	110	60	40	40	AUG	130	130	110	110	120
SEP	130	150	90	90	90	60	50	40	SEP	190	210	230	190	120
OCT	130	150	90	90	90	60	50	50	OCT	170	150	110	100	80
NOV	100	80	80	80	70	50	30	30	NOV	190	230	120	110	80
DEC	130	80	110	110	90	80	40	40	DEC	160	150	170	120	70
mean	111	114	103	89	88	59	48	40	mean	132	140	126	105	105
std dev	25	39	25	17	21	16	20	9	std de	51	55	49	41	36
median	120	105	105	85	90	60	45	40	media	145	145	115	105	80
max	130	190	150	120	130	90	100	60	max	190	230	230	190	190
min	40	40	50	60	50	30	30	30	min	10	40	40	40	40

	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM	<u> </u>	NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	160	40	50	90	220	50	100	JAN	10	30	140	20	60	60	JAN	10	40	20	20	10	110
FEB	220	50	50	90	280	40	110	FEB	60	30	120	10	50	60	FEB	70	40	10	20	10	70
MAR	80	40	30	110	140	40	150	MAR	50	30	130	30	60	70	MAR	80	40	10	20	30	70
APR	200	40	30	60	60	40	80	APR	60	30	180	30	50	60	APR	60	60	50	70	60	50
MAY	90	80	60	120	280	100	320	MAY	90	70	200	60	120	160	MAY	130	110	60	60	60	140
JUN	280	180	150	170	210	70	460	JUN	90	50	220	50	70	130	JUN	80	90	50	60	40	110
JUL	240	160	160	260	320	60	370	JUL		100	350	90	80	190	JUL	120	130	50	50	30	120
AUG	530	180	140	160	270	100	210	AUG		110	320	180	120	90	AUG	200	100	40	50	30	120
SEP	270	200	230	200	830	150	500	SEP		100	330	80	80	190	SEP	100	100	80	70	30	120
OCT	230	120	80	110	260	60	380	OCT		40	210	50	90	160	OCT	90	70	30	50	40	100
NOV	200	110	90	60	200	50	680	NOV	60	30	300	50	60	90	NOV	100	70	40	40	40	80
DEC	260	70	60	120	140	60	210	DEC	60	40	160	40	60	120	DEC	70	50	30	30	10	70
mean	230	106	94	129	268	68	298	mean	60	55	222	58	75	115	mean	93	75	39	45	33	97
std dev	110	59	60	56	184	32	179	std dev	23	30	79	43	23	48	std dev	44	29	20	18	16	27
median	225	95	70	115	240	60	265	median	60	40	205	50	65	105	median	85	70	40	50	30	105
max	530	200	230	260	830	150	680	max	90	110	350	180	120	190	max	200	130	80	70	60	140
min	80	40	30	60	60	40	80	min	10	30	120	10	50	60	min	10	40	10	20	10	50

Table 2.14 Orthophosphate $(\mu g/l)$ at the Lower Cape Fear River Program stations during 2014.

NAV HB BRR M61 M54 M35 M23 M18

JAN	20	20	20	20	20	10	20	10		JAN	30	30	20	10	20	20							
FEB	30	30	30	20	20	10	20	20		FEB	70	60	50	10	40	10							
MAR	20	20	30	20	20	20	10	10		MAR	20	20	10	10	10	10							
APR	20	20	20	20	20	20	10	10		APR	30	30	40	30	30	50							
MAY	40	40	40	40	40	30	20	20		MAY	50	60	30	40	40	50							
JUN	40	50	40	30	30	20	10	0		JUN	60	60	40	30	40	60							
JUL	30	40	30	30	10	10	10	0		JUL	100	100	70	50	60	60							
AUG	30	50	40	50	40	20	20	10		AUG	40	50	30	20	20	50							
SEP	40	60	50	40	60	40	30	10		SEP	110	110	120	50	70	60							
OCT	40	40	50	40	40	40	30	30		OCT	70	70	50	40	40	40							
NOV	40	40	40	40	40	30	20	10		NOV	110	110	60	50	50	30							
DEC	50	50	50	50	50	40	30	20		DEC	70	70	60	20	40	30							
mean	33	38	37	33	33	24	19	13		mean	63	64	48	30	38	39							
std dev	10	13	11	12	15	12	8	9		std dev	31	30	29	16	17	19							
median	35	40	40	35	35	20	20	10		median	65	60	45	30	40	45							
max	50	60	50	50	60	40	30	30		max	110	110	120	50	70	60							
min	20	20	20	20	10	10	10	0		min	20	20	10	10	10	10							
	ANG	CAD	O.C.	NGA02	DD	I D.C.	DOG			CDC.	1.00	aaa	CID.	DDM	****			NOTA	D210	COL	CD WC	1 1/02	ac cm
	ANC	SAR	GS	NC403	PB	LRC	ROC	•		6RC	LCO	GCO	SR	BRN	HAM	·		NCF117		COL			SC-CH
JAN	90	10	10	10	30	60	40		JAN	10	0	60	0	10	20		JAN	20	10	10	0	0	20
FEB	90 120	10 0	10 0	10 30	30 60	60 0	40 40	•	FEB	10 10	0 10	60 80	0	10 10	20 10		JAN FEB	20 20	10 10	10 0	0	0	20 10
FEB MAR	90 120 50	10 0 10	10 0 10	10 30 40	30 60 30	60 0 0	40 40 70	•	FEB MAR	10 10 10	0 10 10	60 80 90	0 0 0	10 10 10	20 10 20	•	JAN FEB MAR	20 20 30	10 10 10	10 0 0	0 0 0	0 0 0	20 10 10
FEB MAR APR	90 120 50 310	10 0 10 20	10 0 10 20	10 30 40 50	30 60 30 30	60 0 0 10	40 40 70 40		FEB MAR APR	10 10 10 30	0 10 10 10	60 80 90 220	0 0 0 10	10 10 10 20	20 10 20 30	•	JAN FEB MAR APR	20 20 30 50	10 10 10 20	10 0 0 10	0 0 0 0	0 0 0	20 10 10 20
FEB MAR APR MAY	90 120 50 310 110	10 0 10 20 50	10 0 10 20 50	10 30 40 50 100	30 60 30 30 50	60 0 0 10 20	40 40 70 40 100		FEB MAR APR MAY	10 10 10 30 30	0 10 10 10 20	60 80 90 220 120	0 0 0 10 10	10 10 10 20 30	20 10 20 30 50		JAN FEB MAR APR MAY	20 20 30 50 60	10 10 10 20 40	10 0 0 10 10	0 0 0 0	0 0 0 0 10	20 10 10 20 50
FEB MAR APR MAY JUN	90 120 50 310 110 140	10 0 10 20 50	10 0 10 20 50	10 30 40 50 100 120	30 60 30 30 50 20	60 0 0 10 20	40 40 70 40 100 150		FEB MAR APR MAY JUN	10 10 10 30	0 10 10 10 20 30	60 80 90 220 120 260	0 0 0 10 10	10 10 10 20 30 30	20 10 20 30 50	,	JAN FEB MAR APR MAY JUN	20 20 30 50 60 50	10 10 10 20 40 50	10 0 0 10 10 20	0 0 0 0 10 20	0 0 0 0 10	20 10 10 20 50
FEB MAR APR MAY JUN JUL	90 120 50 310 110 140 130	10 0 10 20 50 50	10 0 10 20 50 50 60	10 30 40 50 100 120 120	30 60 30 30 50 20 80	60 0 0 10 20 10 20	40 40 70 40 100 150 250		FEB MAR APR MAY JUN JUL	10 10 10 30 30	0 10 10 10 20 30 30	60 80 90 220 120 260 210	0 0 0 10 10 10	10 10 10 20 30 30 40	20 10 20 30 50 60 70	•	JAN FEB MAR APR MAY JUN JUL	20 20 30 50 60 50 40	10 10 10 20 40 50	10 0 0 10 10 20 20	0 0 0 0 10 20 20	0 0 0 0 10 10	20 10 10 20 50 50 40
FEB MAR APR MAY JUN JUL AUG	90 120 50 310 110 140 130 570	10 0 10 20 50 50 50 60	10 0 10 20 50 50 60 50	10 30 40 50 100 120 120 80	30 60 30 30 50 20 80 70	60 0 0 10 20 10 20	40 40 70 40 100 150 250 100		FEB MAR APR MAY JUN JUL AUG	10 10 10 30 30	0 10 10 10 20 30 30 20	60 80 90 220 120 260 210 180	0 0 0 10 10 10 10	10 10 10 20 30 30 40 30	20 10 20 30 50 60 70 40		JAN FEB MAR APR MAY JUN JUL AUG	20 20 30 50 60 50 40 80	10 10 10 20 40 50 60 40	10 0 0 10 10 20 20	0 0 0 0 10 20 20 20	0 0 0 0 10 10 0	20 10 10 20 50 50 40 40
FEB MAR APR MAY JUN JUL AUG SEP	90 120 50 310 110 140 130 570 140	10 0 10 20 50 50 50 60	10 0 10 20 50 50 60 50	10 30 40 50 100 120 120 80 80	30 60 30 30 50 20 80 70	60 0 0 10 20 10 20 10 20	40 40 70 40 100 150 250 100 250		FEB MAR APR MAY JUN JUL AUG SEP	10 10 10 30 30	0 10 10 10 20 30 30 20 20	60 80 90 220 120 260 210 180 140	0 0 0 10 10 10 10 0 20	10 10 10 20 30 30 40 30 40	20 10 20 30 50 60 70 40 80	•	JAN FEB MAR APR MAY JUN JUL AUG SEP	20 20 30 50 60 50 40 80 50	10 10 10 20 40 50 60 40	10 0 0 10 10 20 20 10 50	0 0 0 0 10 20 20 20 20	0 0 0 0 10 10 0 0	20 10 10 20 50 50 40 40 50
FEB MAR APR MAY JUN JUL AUG SEP OCT	90 120 50 310 110 140 130 570 140 150	10 0 10 20 50 50 50 60 60 30	10 0 10 20 50 50 60 50 50 30	10 30 40 50 100 120 120 80 80 30	30 60 30 30 50 20 80 70 50 80	60 0 0 10 20 10 20 10 20 10	40 40 70 40 100 150 250 100 250 220	•	FEB MAR APR MAY JUN JUL AUG SEP OCT	10 10 10 30 30 40	0 10 10 10 20 30 30 20 20 20	60 80 90 220 120 260 210 180 140	0 0 0 10 10 10 10 0 20	10 10 10 20 30 30 40 30 40 30	20 10 20 30 50 60 70 40 80		JAN FEB MAR APR MAY JUN JUL AUG SEP OCT	20 20 30 50 60 50 40 80 50 40	10 10 10 20 40 50 60 40 40 20	10 0 0 10 10 20 20 10 50	0 0 0 0 10 20 20 20 20 20	0 0 0 0 10 10 0 0	20 10 10 20 50 50 40 40 50 40
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	90 120 50 310 110 140 130 570 140 150	10 0 10 20 50 50 50 60 60 30 20	10 0 10 20 50 50 60 50 50 30	10 30 40 50 100 120 120 80 80 30 20	30 60 30 30 50 20 80 70 50 80 20	60 0 0 10 20 10 20 10 20 10	40 40 70 40 100 150 250 100 250 220 600		FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	10 10 10 30 30 40	0 10 10 10 20 30 30 20 20 20	60 80 90 220 120 260 210 180 140 130 240	0 0 0 10 10 10 10 0 20 10	10 10 10 20 30 30 40 30 40 30 20	20 10 20 30 50 60 70 40 80 60		JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	20 20 30 50 60 50 40 80 50 40 30	10 10 10 20 40 50 60 40 40 20 20	10 0 0 10 10 20 20 10 50 10	0 0 0 0 10 20 20 20 20 20 20	0 0 0 10 10 10 0 0	20 10 10 20 50 50 40 40 50 40 30
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	90 120 50 310 110 140 130 570 140 150 110 180	10 0 10 20 50 50 50 60 60 30 20	10 0 10 20 50 50 60 50 50 30 20 30	10 30 40 50 100 120 120 80 80 30 20 50	30 60 30 30 50 20 80 70 50 80 20 60	60 0 0 10 20 10 20 10 20 10 20 10 20	40 40 70 40 100 150 250 100 250 220 600 120		FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	10 10 10 30 30 40	0 10 10 10 20 30 30 20 20 20 10	60 80 90 220 120 260 210 180 140 130 240 90	0 0 0 10 10 10 10 0 20 10 10	10 10 10 20 30 30 40 30 40 30 20 20	20 10 20 30 50 60 70 40 80 60 60 50		JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	20 20 30 50 60 50 40 80 50 40 30 30	10 10 20 40 50 60 40 40 20 20	10 0 0 10 10 20 20 10 50 10	0 0 0 10 20 20 20 20 20 10	0 0 0 10 10 0 0 0 0	20 10 10 20 50 50 40 40 50 40 30 30
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	90 120 50 310 110 140 130 570 140 150 110 180	10 0 10 20 50 50 50 60 60 30 20 20	10 0 10 20 50 50 60 50 50 30 20 30	10 30 40 50 100 120 120 80 80 30 20 50	30 60 30 30 50 20 80 70 50 80 20 60	60 0 0 10 20 10 20 10 20 10 20 10 20	40 40 70 40 100 150 250 100 250 220 600 120		FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	10 10 10 30 30 40 30 40	0 10 10 10 20 30 30 20 20 20 10	60 80 90 220 120 260 210 180 140 130 240 90	0 0 0 10 10 10 10 0 20 10 10 10	10 10 10 20 30 30 40 30 40 30 20 20	20 10 20 30 50 60 70 40 80 60 60 50		JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean	20 20 30 50 60 50 40 80 50 40 30 30	10 10 10 20 40 50 60 40 40 20 20 20	10 0 0 10 10 20 20 10 50 10 10 10	0 0 0 10 20 20 20 20 20 10	0 0 0 0 10 10 0 0 0 0 0	20 10 10 20 50 50 40 40 50 40 30 30 33
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	90 120 50 310 110 140 130 570 140 150 110 180	10 0 10 20 50 50 50 60 60 30 20 20 21	10 0 10 20 50 50 60 50 50 30 20 30 32	10 30 40 50 100 120 120 80 80 30 20 50	30 60 30 30 50 20 80 70 50 80 20 60 48	60 0 0 10 20 10 20 10 20 10 20 10 10 20	40 40 70 40 100 150 250 100 250 220 600 120		FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	10 10 10 30 30 40 30 40	0 10 10 10 20 30 30 20 20 20 10 10	60 80 90 220 120 260 210 180 140 130 240 90 152 68	0 0 0 10 10 10 10 0 20 10 10 10	10 10 10 20 30 30 40 30 40 30 20 20	20 10 20 30 50 60 70 40 80 60 60 50		JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	20 20 30 50 60 50 40 80 50 40 30 30 42	10 10 10 20 40 50 60 40 40 20 20 20 28	10 0 0 10 10 20 20 10 50 10 10 10	0 0 0 0 10 20 20 20 20 20 10 10	0 0 0 10 10 0 0 0 0 0 0	20 10 10 20 50 50 40 40 50 40 30 30 33
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	90 120 50 310 110 140 130 570 140 150 110 180	10 0 10 20 50 50 50 60 60 30 20 20	10 0 10 20 50 50 60 50 50 30 20 30	10 30 40 50 100 120 120 80 80 30 20 50	30 60 30 30 50 20 80 70 50 80 20 60	60 0 0 10 20 10 20 10 20 10 20 10 20	40 40 70 40 100 150 250 100 250 220 600 120		FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	10 10 10 30 30 40 30 40	0 10 10 10 20 30 30 20 20 20 10	60 80 90 220 120 260 210 180 140 130 240 90	0 0 0 10 10 10 10 0 20 10 10 10	10 10 10 20 30 30 40 30 40 30 20 20	20 10 20 30 50 60 70 40 80 60 60 50		JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean	20 20 30 50 60 50 40 80 50 40 30 30	10 10 10 20 40 50 60 40 40 20 20 20	10 0 0 10 10 20 20 10 50 10 10 10	0 0 0 10 20 20 20 20 20 10	0 0 0 0 10 10 0 0 0 0 0	20 10 10 20 50 50 40 40 50 40 30 30 33

NC11 AC DP BBT IC NCF6

Table 2.15 Chlorophyll $a~(\mu g/l)$ at the Lower Cape Fear River Program stations during 2014.

	NAV	HB	BRR	M61	M54	M35	M23	M18
JAN	4	4	4	4	4	4	4	6
FEB	7	5	6	4	5	9	4	5
MAR	5	5	5	4	3	3	3	6
APR	12	9	10	9	8	7	7	7
MAY	1	1	3	1	1	3	6	4
JUN	3	3	37	11	12	8	6	6
JUL	13	13	17	30	27	16	5	3
AUG	2	2	4	2	9	6	6	9
SEP	2	3	3	6	4	6	7	5
OCT	1	1	1	1	2	2	3	3
NOV	1	2	3	2	3	5	5	6
DEC	1	1	1	2	2	3	4	5
mean	4	4	8	6	7	6	5	5
std dev	4	4	10	8	7	4	1	2
median	3	3	4	4	4	6	5	6
max	13	13	37	30	27	16	7	9
min	1	1	1	1	1	2	3	3

	NC11	AC	DP	BBT	IC	NCF6
JAN	7	6	6	2	4	2
FEB	5	5	6	2	5	3
MAR	22	21	20	16	14	6
APR	8	7	7	7	6	1
MAY	1	1	1	1	1	1
JUN	3	2	4	1	3	2
JUL	13	8	7	2	3	3
AUG	4	3	3	1	2	1
SEP	5	5	3	1	2	1
OCT	2	4	1	1	1	5
NOV	3	2	1	1	1	3
DEC	6	5	5	1	3	0
mean	7	6	5	3	4	2
std dev	6	5	5	4	4	2
median	5	5	5	1	3	2
max	22	21	20	16	14	6
min	1	1	1	1	1	0

BRN HAM

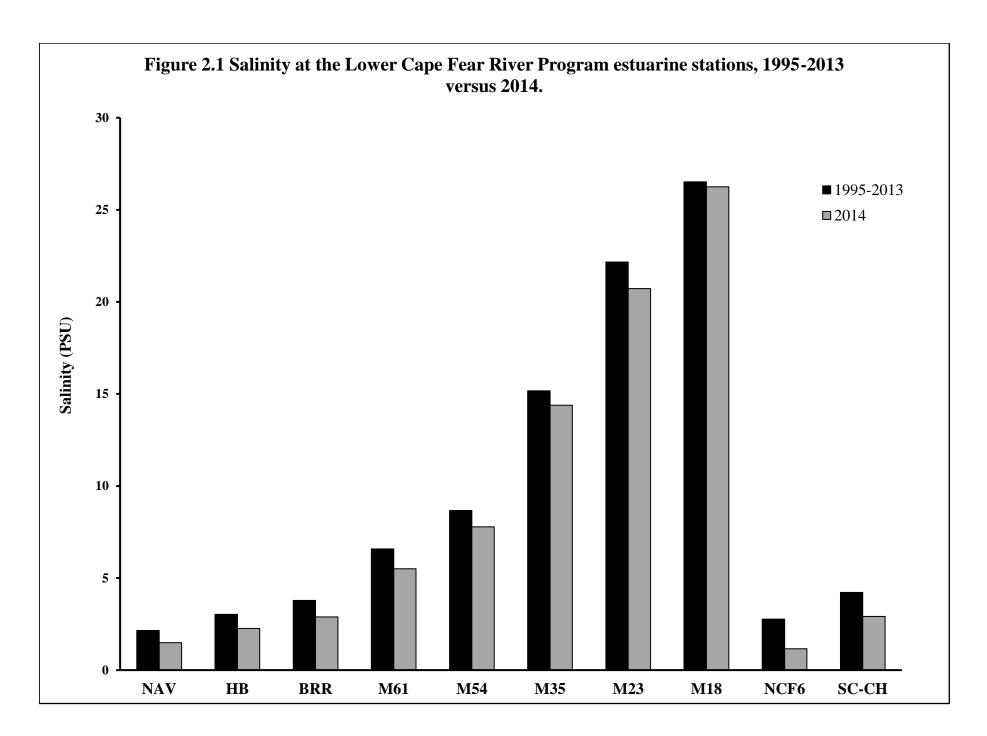
	ANC	SAR	GS	NC403	PB	LRC	ROC
JAN	2	4	12	2	3	3	1
FEB	4	14	28	10	19	16	8
MAR	2	2	4	4	7	7	2
APR	4	3	3	4	6	3	2
MAY	3	1	2	3	4	1	1
JUN	9	2	10	14	11	1	0
JUL	26	2	8	7	9	3	1
AUG	1	1	2	4	3	11	1
SEP	15	1	7	11	12	0	1
OCT	3	1	4	3	4	1	0
NOV	2	1	6	4	26	0	1
DEC	1	3	3	2	4	2	2
mean	6	3	7	6	9	4	2
std dev	7	4	7	4	7	5	2
median	3	2	5	4	7	3	1
max	26	14	28	14	26	16	8
min	1	1	2	2	3	0	0

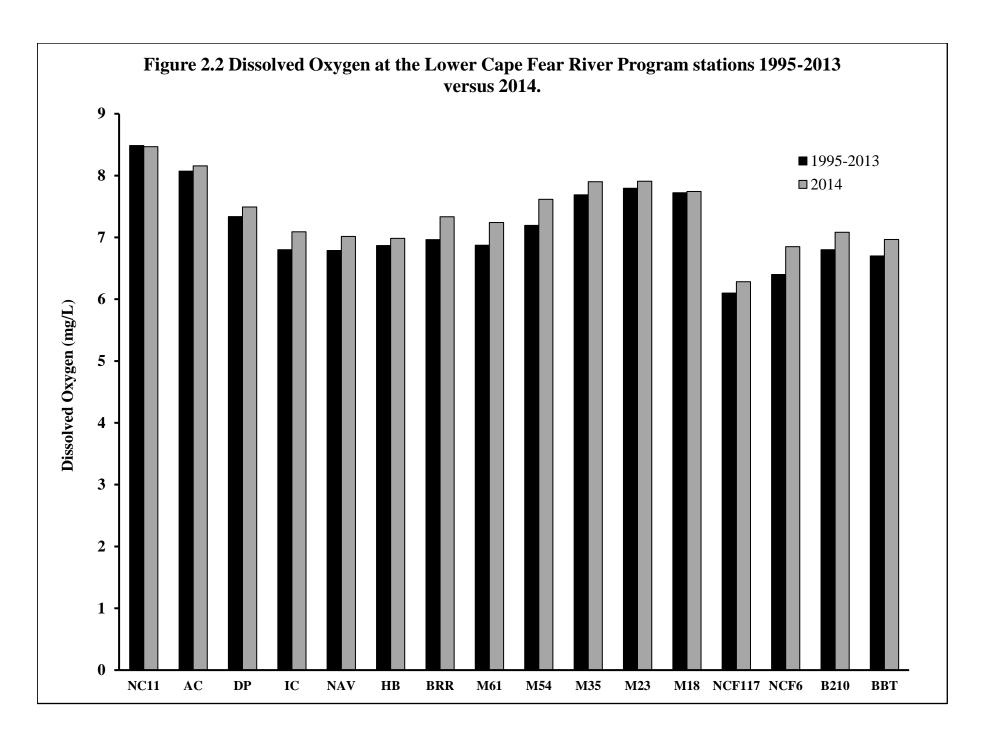
JAN	2	1	1	1	2	2
FEB	3	2	4	2	1	4
MAR	2	2	2	1	2	3
APR	2	1	2	9	3	2
MAY	1	1	2	4	1	1
JUN	1	0	1	4	0	1
JUL		1	1	2	6	5
AUG		2	3	32	4	2
SEP		3	5	6	7	3
OCT		0	1	3	1	0
NOV	1	2	1	1	0	0
DEC	1	1	1	2	1	0
mean	2	1	2	6	2	2
std dev	1	1	1	9	2	2
median	2	1	2	3	2	2
max	3	3	5	32	7	5
min	1	0	1	1	0	0
	_					

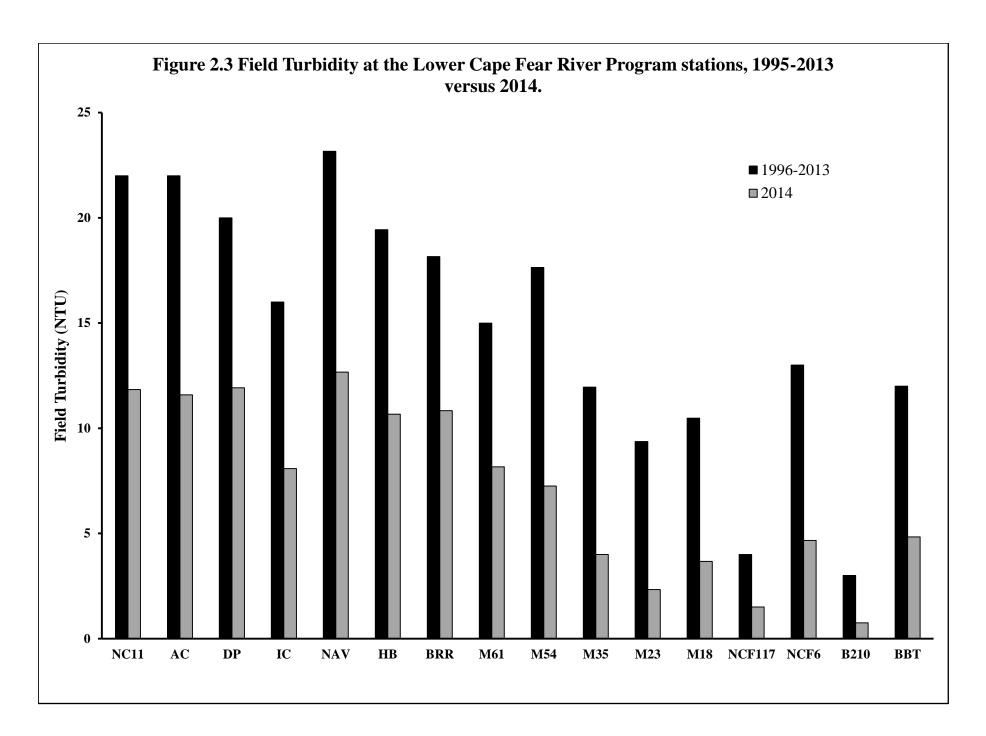
	NCF117	B210	COL	SR-WC	LVC2	SC-CH
JAN	8	3	1	2	2	4
FEB	2	4	0	2	2	3
MAR	1	4	3	2	2	2
APR	1	2	1	4	1	3
MAY	1	1	1	0	2	1
JUN	4	2	3	0	2	9
JUL	1	1	6	0	1	6
AUG	1	1	1	2	1	2
SEP	0	2	3	2	2	2
OCT	0	0	0	0	1	3
NOV	0	0	1	0	1	2
DEC	0	0	0	0	0	1
mean	2	2	2	1	1	3
std dev	2	1	2	1	1	2
median	1	2	1	1	2	3
max	8	4	6	4	2	9
min	0	0	0	0	0	1

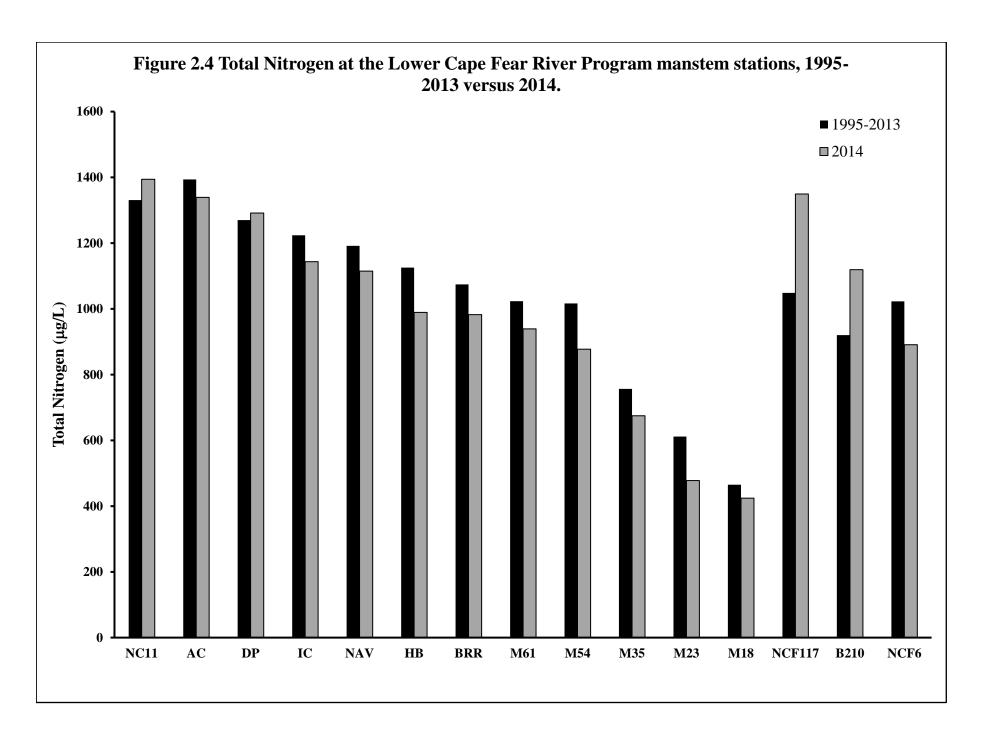
Table 2.16 Biochemical Oxygen Demand (mg/l) at the Lower Cape Fear River Program stations during 2014.

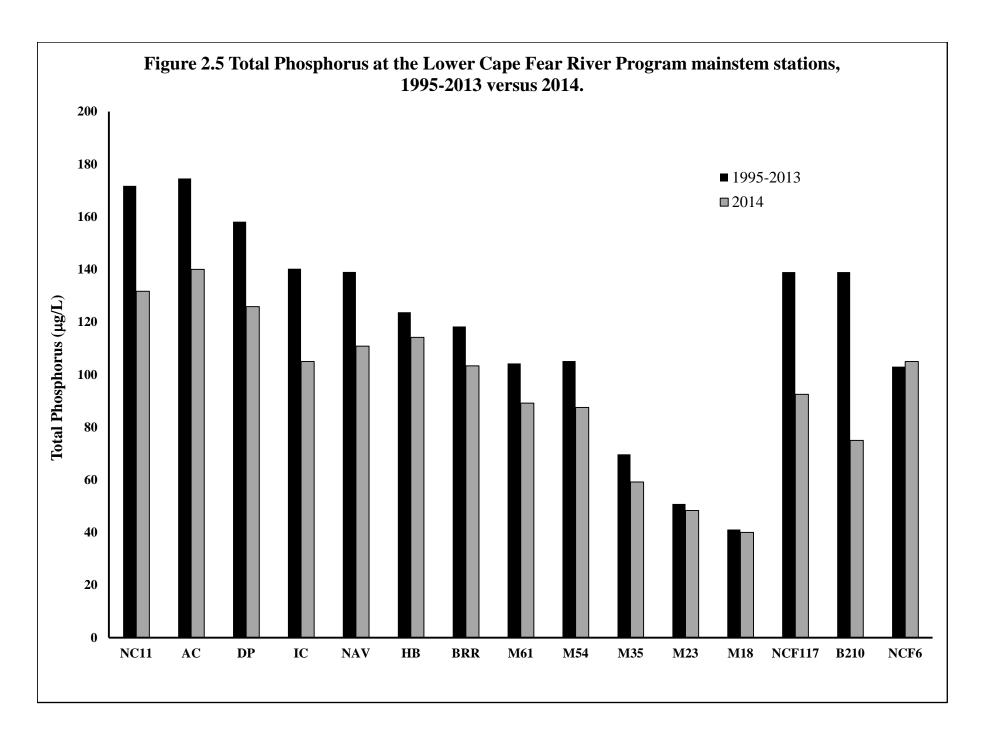
5-Day Biochemical Oxygen Demand


	NC11	AC	BBT	NCF117	B210	LVC2
JAN	3.0	2.7	1.4	1.4	1.4	1.9
FEB	1.6	1.4	1.1	1.8	1.2	0.9
MAR	1.9	2.0	1.6	1.5	1.2	0.9
APR	1.6	1.4	1.4	1.3	1.1	0.9
MAY	1.1	1.5	1.5	0.8	0.9	1.6
JUN	1.3	1.5	1.0	1.7	1.2	1.4
JUL	1.6	1.6	0.8	1.5	1.0	1.5
AUG	1.7	2.0		1.4	1.3	1.0
SEP	0.7	1.5	0.9	1.0	1.5	1.5
OCT	0.9	1.3	1.3	0.8	1.2	0.8
NOV	0.9	2.1	1.1	1.6	1.4	2.4
DEC	1.5		1.2	1.5	1.2	0.9
mean	1.5	1.7	1.2	1.4	1.2	1.3
stdev	0.6	0.4	0.3	0.3	0.2	0.5
median	1.5	1.5	1.2	1.5	1.2	1.2
max	3.0	2.7	1.6	1.8	1.5	2.4
min	0.7	1.3	0.8	0.8	0.9	0.8


20-Day Biochemical Oxygen Demand


	NC11	AC	BBT	NCF117	B210	LVC2
JAN	5.4	5.5	3.1	3.2	2.9	3.7
FEB	3.9	3.8	2.7	4.1	2.6	2.5
MAR	4.8	5.0	4.1	4.0		2.5
APR	4.0	3.4	3.6	4.1	2.5	2.3
MAY	3.0	5.0	4.5	2.7	2.5	4.1
JUN	3.6	4.0	3.2	2.7	2.6	2.9
JUL	3.8	5.1	2.8	3.4	2.7	3.7
AUG	4.5	4.9		4.2	3.9	3.0
SEP	2.7	5.1	3.5	3.4	3.5	4.1
OCT	2.5	3.3	3.1	2.4	2.8	2.6
NOV	2.5	5.7	3.3	3.8	3.1	7.1
DEC	3.9		3.4	3.9	2.7	2.6
mean	3.7	4.6	3.4	3.5	2.9	3.4
stdev	0.9	0.9	0.5	0.6	0.4	1.3
median	3.9	5.0	3.3	3.6	2.7	3.0
max	5.4	5.7	4.5	4.2	3.9	7.1
min	2.5	3.3	2.7	2.4	2.5	2.3


Table 2.17 Fecal Coliform (cfu/100 mL) and Enterococcus (MPN) at the Lower Cape Fear River Program stations during 2014.


									~~~~~												
Ī	NC11	AC	DD	IC	NCE	NI A X7	IID	ENTERO			M54	M25	Мээ	M10							
JAN	NC11 73	AC 55	<b>DP</b> 127	IC 55	NCF6 19	NAV 16,000	<b>HB</b> 60,000	JAN	<b>BRR</b> 1,515	<b>M61</b> 1,376	M54 985	M35	M23 293	M18 337							
FEB	145	172	172	220	46	5	37	FEB	1,313	5	5	10	31	5							
MAR	10	136	37	91	320	10	37	MAR	5	20	10	10	10	10							
APR	240	37	19	46	290	64	73	APR	31	20	31	5	5	5							
MAY	46	19	19	91	73	37	82	MAY	20	10	10	63	10	5							
JUN	37	28	37	37	55	28	28	JUN	20	20	5	5	5	5							
JUL	10	5	10	55	28	37	91	JUL	10	10	5	5	5	5							
AUG	240	37	1,180	46	91	46	91	AUG	10	10	5	5	5	5							
SEP	28	37	91	46	46	280	420	SEP	156	134	74	31	5	5							
OCT	91	109	270	260	5,900	154	118	OCT	336	677	1,198	529	1,682	1,552							
NOV	9	28	37	73	109	73	46	NOV	5	5	10	5	5	5							
DEC	28	28	100	37	10	82	19	DEC	5	5	10	5	5	5							
mean	80	58	175	88	582	1,401	5,087	mean	177	191	196	59	172	162							
std dev	81	50	312	71	1,606	4,402	16,557	std dev	414	401	403	143	462	429							
max	240 9	172	1,180	260	5,900	16,000	60,000	max	1,515	1,376	1,198	529	1,682	1,552							
min	45	5 40	10 69	37 70	10 89	5 73	19 114	min Geomean	5 27	5 27	5 23	5 14	5 15	5 12							
Geomean	43	40	09	70	09	13	114	Geomean	21	21	23	14	13	12							
Ī	ANC	SAR	GS	NC403	PB	LRC	ROC		6RC	LCO	GCO	SR	BRN	HAM		NCF117	B210	COL	SRWC	LVC2	SC-CH
JAN	ANC 145	<b>SAR</b> 127	<b>GS</b> 64	NC403	<b>PB</b> 37	LRC 400	<b>ROC</b> 91	JAN	<b>6RC</b> 172	LCO 136	GCO 100	<b>SR</b> 37	<b>BRN</b> 181	<b>HAM</b> 208	JAN	NCF117 73	<b>B210</b>	COL 64	<b>SRWC</b> 73	LVC2	SC-CH 127
JAN FEB								JAN FEB							JAN FEB	_					
	145	127	64	64	37	400	91		172	136	100	37	181	208		73	127	64	73	37	127
FEB	145 280	127 154	64 37	64 46	37 64	400 28	91 200	FEB	172 118	136 172	100 37	37 10	181 91	208 73	FEB	73 100	127 73	64 100	73 118	37 55	127 64
FEB MAR APR MAY	145 280 100	127 154 109	64 37 28	64 46 19 55 1,180	37 64 172 55 91	400 28 240 455 163	91 200 127 100 172	FEB MAR APR MAY	172 118 91	136 172 28	100 37 5	37 10 55	181 91 300	208 73 55 217 17,000	FEB MAR	73 100 728	127 73 73 82 37	64 100 73	73 118 199	37 55 181 64 73	127 64 440
FEB MAR APR MAY JUN	145 280 100 145 64 190	127 154 109 163 460 118	64 37 28 28 73 136	64 46 19 55 1,180 1,730	37 64 172 55 91 390	400 28 240 455 163 73	91 200 127 100 172 154	FEB MAR APR MAY JUN	172 118 91 127	136 172 28 55 430 19	100 37 5 163 1,460 46	37 10 55 46 1,270 91	181 91 300 230 364 470	208 73 55 217 17,000 1,360	FEB MAR APR MAY JUN	73 100 728 64 19 91	127 73 73 82 37 28	64 100 73 64 360 118	73 118 199 154 82 91	37 55 181 64 73 46	127 64 440 100 109 55
FEB MAR APR MAY JUN JUL	145 280 100 145 64 190 455	127 154 109 163 460 118 546	64 37 28 28 73 136 455	64 46 19 55 1,180 1,730 145	37 64 172 55 91 390 728	400 28 240 455 163 73 136	91 200 127 100 172 154 455	FEB MAR APR MAY JUN JUL	172 118 91 127 400	136 172 28 55 430 19 230	100 37 5 163 1,460 46 490	37 10 55 46 1,270 91 55	181 91 300 230 364 470 181	208 73 55 217 17,000 1,360 200	FEB MAR APR MAY JUN JUL	73 100 728 64 19 91 19	127 73 73 82 37 28 46	64 100 73 64 360 118 100	73 118 199 154 82 91	37 55 181 64 73 46 91	127 64 440 100 109 55 136
FEB MAR APR MAY JUN JUL AUG	145 280 100 145 64 190 455 470	127 154 109 163 460 118 546 200	64 37 28 28 73 136 455 273	64 46 19 55 1,180 1,730 145 182	37 64 172 55 91 390 728 3,600	400 28 240 455 163 73 136 210	91 200 127 100 172 154 455 1,090	FEB MAR APR MAY JUN JUL AUG	172 118 91 127 400	136 172 28 55 430 19 230 100	100 37 5 163 1,460 46 490 200	37 10 55 46 1,270 91 55 728	181 91 300 230 364 470 181 3,000	208 73 55 217 17,000 1,360 200 2,500	FEB MAR APR MAY JUN JUL AUG	73 100 728 64 19 91 19	127 73 73 82 37 28 46 82	64 100 73 64 360 118 100 55	73 118 199 154 82 91 91	37 55 181 64 73 46 91	127 64 440 100 109 55 136 118
FEB MAR APR MAY JUN JUL AUG SEP	145 280 100 145 64 190 455 470 280	127 154 109 163 460 118 546 200 145	64 37 28 28 73 136 455 273 728	64 46 19 55 1,180 1,730 145 182 145	37 64 172 55 91 390 728 3,600 181	400 28 240 455 163 73 136 210 82	91 200 127 100 172 154 455 1,090	FEB MAR APR MAY JUN JUL AUG SEP	172 118 91 127 400	136 172 28 55 430 19 230 100 270	100 37 5 163 1,460 46 490 200 181	37 10 55 46 1,270 91 55 728 136	181 91 300 230 364 470 181 3,000 4,100	208 73 55 217 17,000 1,360 200 2,500 1,820	FEB MAR APR MAY JUN JUL AUG SEP	73 100 728 64 19 91 19 19	127 73 73 82 37 28 46 82 100	64 100 73 64 360 118 100 55 200	73 118 199 154 82 91 91 172 119	37 55 181 64 73 46 91 91 455	127 64 440 100 109 55 136 118 819
FEB MAR APR MAY JUN JUL AUG SEP OCT	145 280 100 145 64 190 455 470 280 307	127 154 109 163 460 118 546 200 145 420	64 37 28 28 73 136 455 273 728 250	64 46 19 55 1,180 1,730 145 182 145 728	37 64 172 55 91 390 728 3,600 181 340	400 28 240 455 163 73 136 210 82 500	91 200 127 100 172 154 455 1,090 181 220	FEB MAR APR MAY JUN JUL AUG SEP OCT	172 118 91 127 400 73	136 172 28 55 430 19 230 100 270 2,000	100 37 5 163 1,460 46 490 200 181 1,910	37 10 55 46 1,270 91 55 728 136 1,730	181 91 300 230 364 470 181 3,000 4,100 18,000	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000	FEB MAR APR MAY JUN JUL AUG SEP OCT	73 100 728 64 19 91 19 19 145 37	127 73 73 82 37 28 46 82 100 28	64 100 73 64 360 118 100 55 200 64	73 118 199 154 82 91 91 172 119 64	37 55 181 64 73 46 91 91 455 136	127 64 440 100 109 55 136 118 819 37
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	145 280 100 145 64 190 455 470 280 307 172	127 154 109 163 460 118 546 200 145 420	64 37 28 28 73 136 455 273 728 250 55	64 46 19 55 1,180 1,730 145 182 145 728 46	37 64 172 55 91 390 728 3,600 181 340 210	400 28 240 455 163 73 136 210 82 500 64	91 200 127 100 172 154 455 1,090 181 220 73	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	172 118 91 127 400 73	136 172 28 55 430 19 230 100 270 2,000 109	100 37 5 163 1,460 46 490 200 181 1,910	37 10 55 46 1,270 91 55 728 136 1,730 2,000	181 91 300 230 364 470 181 3,000 4,100 18,000 490	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000 637	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	73 100 728 64 19 91 19 19 145 37 37	127 73 73 82 37 28 46 82 100 28 55	64 100 73 64 360 118 100 55 200 64 136	73 118 199 154 82 91 91 172 119 64 118	37 55 181 64 73 46 91 91 455 136 28	127 64 440 100 109 55 136 118 819 37 46
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	145 280 100 145 64 190 455 470 280 307 172 1,640	127 154 109 163 460 118 546 200 145 420 100 43,000	64 37 28 28 73 136 455 273 728 250 55 1,820	64 46 19 55 1,180 1,730 145 182 145 728 46 1,270	37 64 172 55 91 390 728 3,600 181 340 210 6,000	400 28 240 455 163 73 136 210 82 500 64 4,700	91 200 127 100 172 154 455 1,090 181 220 73 31,000	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	172 118 91 127 400 73	136 172 28 55 430 19 230 100 270 2,000 109 46	100 37 5 163 1,460 46 490 200 181 1,910 100 55	37 10 55 46 1,270 91 55 728 136 1,730 2,000 64	181 91 300 230 364 470 181 3,000 4,100 18,000 490 172	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000 637 210	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	73 100 728 64 19 91 19 19 145 37 37	127 73 73 82 37 28 46 82 100 28 55	64 100 73 64 360 118 100 55 200 64 136 64	73 118 199 154 82 91 91 172 119 64 118 127	37 55 181 64 73 46 91 91 455 136 28 37	127 64 440 100 109 55 136 118 819 37 46 55
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	145 280 100 145 64 190 455 470 280 307 172 1,640	127 154 109 163 460 118 546 200 145 420 100 43,000 <b>3,795</b>	64 37 28 28 73 136 455 273 728 250 55 1,820	64 46 19 55 1,180 1,730 145 182 145 728 46 1,270	37 64 172 55 91 390 728 3,600 181 340 210 6,000	400 28 240 455 163 73 136 210 82 500 64 4,700	91 200 127 100 172 154 455 1,090 181 220 73 31,000 <b>2,822</b>	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	172 118 91 127 400 73 64 118	136 172 28 55 430 19 230 100 270 2,000 109 46 300	100 37 5 163 1,460 46 490 200 181 1,910 100 55	37 10 55 46 1,270 91 55 728 136 1,730 2,000 64 519	181 91 300 230 364 470 181 3,000 4,100 18,000 490 172 <b>2,298</b>	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000 637 210 <b>4,690</b>	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	73 100 728 64 19 91 19 19 145 37 37 10	127 73 73 82 37 28 46 82 100 28 55 55	64 100 73 64 360 118 100 55 200 64 136 64	73 118 199 154 82 91 172 119 64 118 127	37 55 181 64 73 46 91 91 455 136 28 37	127 64 440 100 109 55 136 118 819 37 46 55
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	145 280 100 145 64 190 455 470 280 307 172 1,640 354	127 154 109 163 460 118 546 200 145 420 100 43,000 <b>3,795</b>	64 37 28 28 73 136 455 273 728 250 55 1,820 329 493	64 46 19 55 1,180 1,730 145 182 145 728 46 1,270 468 577	37 64 172 55 91 390 728 3,600 181 340 210 6,000 <b>989</b> 1,783	400 28 240 455 163 73 136 210 82 500 64 4,700 <b>588</b> 1,249	91 200 127 100 172 154 455 1,090 181 220 73 31,000 <b>2,822</b> 8,500	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	172 118 91 127 400 73 64 118 145	136 172 28 55 430 19 230 100 270 2,000 109 46 <b>300</b> 525	100 37 5 163 1,460 46 490 200 181 1,910 100 55 <b>396</b> 596	37 10 55 46 1,270 91 55 728 136 1,730 2,000 64 519 704	181 91 300 230 364 470 181 3,000 4,100 18,000 490 172 2,298 4,893	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000 637 210 4,690 9,403	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	73 100 728 64 19 91 19 19 145 37 37 10	127 73 73 82 37 28 46 82 100 28 55 55	64 100 73 64 360 118 100 55 200 64 136 64 117 84	73 118 199 154 82 91 172 119 64 118 127	37 55 181 64 73 46 91 91 455 136 28 37 <b>108</b>	127 64 440 100 109 55 136 118 819 37 46 55 <b>176</b> 220
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev max	145 280 100 145 64 190 455 470 280 307 172 1,640 354 407 280	127 154 109 163 460 118 546 200 145 420 100 43,000 3,795 11,822 43,000	64 37 28 28 73 136 455 273 728 250 55 1,820 329 493 1,820	64 46 19 55 1,180 1,730 145 182 145 728 46 1,270 468 577 1,730	37 64 172 55 91 390 728 3,600 181 340 210 6,000 989 1,783 6,000	400 28 240 455 163 73 136 210 82 500 64 4,700 <b>588</b> 1,249 4,700	91 200 127 100 172 154 455 1,090 181 220 73 31,000 <b>2,822</b> 8,500 31,000	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev max	172 118 91 127 400 73 64 118 145 101 400	136 172 28 55 430 19 230 100 270 2,000 109 46 <b>300</b> 525 2,000	100 37 5 163 1,460 46 490 200 181 1,910 100 55 <b>396</b> 596 1,910	37 10 55 46 1,270 91 55 728 136 1,730 2,000 64 519 704 2,000	181 91 300 230 364 470 181 3,000 4,100 18,000 490 172 2,298 4,893 18,000	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000 637 210 4,690 9,403 32,000	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev max	73 100 728 64 19 91 19 19 145 37 37 10 112 190 728	127 73 73 82 37 28 46 82 100 28 55 56 29 127	64 100 73 64 360 118 100 55 200 64 136 64 117 84 360	73 118 199 154 82 91 172 119 64 118 127 117 39	37 55 181 64 73 46 91 91 455 136 28 37 <b>108</b> 113 455	127 64 440 100 109 55 136 118 819 37 46 55 176 220 819
FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	145 280 100 145 64 190 455 470 280 307 172 1,640 354 407 280 64	127 154 109 163 460 118 546 200 145 420 100 43,000 <b>3,795</b>	64 37 28 28 73 136 455 273 728 250 55 1,820 329 493	64 46 19 55 1,180 1,730 145 182 145 728 46 1,270 468 577	37 64 172 55 91 390 728 3,600 181 340 210 6,000 <b>989</b> 1,783	400 28 240 455 163 73 136 210 82 500 64 4,700 <b>588</b> 1,249	91 200 127 100 172 154 455 1,090 181 220 73 31,000 <b>2,822</b> 8,500	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	172 118 91 127 400 73 64 118 145 101 400 64	136 172 28 55 430 19 230 100 270 2,000 109 46 <b>300</b> 525	100 37 5 163 1,460 46 490 200 181 1,910 100 55 <b>396</b> 596	37 10 55 46 1,270 91 55 728 136 1,730 2,000 64 519 704	181 91 300 230 364 470 181 3,000 4,100 18,000 490 172 2,298 4,893	208 73 55 217 17,000 1,360 200 2,500 1,820 32,000 637 210 4,690 9,403	FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC mean std dev	73 100 728 64 19 91 19 19 145 37 37 10 112 190 728 10	127 73 73 82 37 28 46 82 100 28 55 55	64 100 73 64 360 118 100 55 200 64 136 64 117 84	73 118 199 154 82 91 172 119 64 118 127	37 55 181 64 73 46 91 91 455 136 28 37 <b>108</b>	127 64 440 100 109 55 136 118 819 37 46 55 <b>176</b> 220

