Environmental Assessment of the Lower Cape Fear River System, 2018

By

Michael A. Mallin, Matthew R. McIver and James F. Merritt August 2019

CMS Report No. 19-02
Center for Marine Science
University of North Carolina Wilmington
Wilmington, N.C. 28409

Executive Summary

Background – Multi-parameter water quality sampling for the Lower Cape Fear River Program (LCFRP) http://www.uncw.edu/cms/aelab/LCFRP/index.htm, has been ongoing since June 1995. Scientists from the University of North Carolina Wilmington's (UNCW) Aquatic Ecology Laboratory perform the sampling effort. The LCFRP currently encompasses 32 water sampling stations throughout the lower Cape Fear, Black, and Northeast Cape Fear River watersheds. The LCFRP sampling program includes physical, chemical, and biological water quality measurements and analyses of the benthic and epibenthic macroinvertebrate communities, and has in the past included assessment of the fish communities. Principal conclusions of the UNCW researchers conducting these analyses are presented below, with emphasis on water quality of the period January - December 2018. The opinions expressed are those of UNCW scientists and do not necessarily reflect viewpoints of individual contributors to the Lower Cape Fear River Program.

The mainstem lower Cape Fear River is a 6th order stream characterized by periodically turbid water containing moderate to high levels of inorganic nutrients. It is fed by two large 5th order blackwater rivers (the Black and Northeast Cape Fear Rivers) that have low levels of turbidity, but highly colored water with less inorganic nutrient content than the mainstem. While nutrients are reasonably high in the river channels, major algal blooms are normally rare because light is attenuated by water color or turbidity, and flushing in the estuary is usually high (Ensign et al. 2004). During periods of low flow algal biomass as chlorophyll a increases in the cape Fear River because lower flow causes settling of more solids and improves light conditions for algal growth. Periodically major algal blooms are seen in the tributary stream stations, some of which are impacted by point source discharges. Below some point sources, nutrient loading can be high and fecal coliform contamination occurs. Other stream stations drain blackwater swamps or agricultural areas (traditional agriculture and/or industrialized animal production), and some sites periodically show elevated pollutant loads or effects (Mallin et al. 2001). This region has been hit by hurricanes several times in the past three decades and such storms have a marked impact on water quality and organisms.

GenX Issues - During the past three years there has been considerable controversy in the lower Cape Fear River watershed regarding a family of manufactured chemical compounds collectively known as GenX. To briefly summarize, DuPont constructed a facility known as Fayetteville Works near the river downstream of Fayetteville, where it manufactured fluoropolymers since 1971. DuPont manufactured a chemical called PFOA at Fayetteville Works beginning in 2001, then later stopped its manufacture due to health concerns surrounding this chemical. They then developed a substitute chemical called GenX, which they began manufacturing there, along with GenX's parent compound, called HFPO-DA fluoride. Both compounds hydrolize in water to a third compound called HFPO-DA, CAS; the toxicity of this group of chemicals is unclear. Subsequently, DuPont spun-off a company called Chemours, which assumed plant operations in 2015. In the past few years researchers from US EPA, North Carolina State University, and the University of North Carolina Wilmington have found HFPO-DA

and related fluoroethers (which tend to be lumped under the blanket term GenX) in river water, river sediments, well water near the plant, aquatic organisms, in air samples, and in finished drinking water at the Wilmington water treatment facility, which obtains its water near Lock and Dam #1. Fayetteville Works is currently trucking their wastewater out of state for treatment, and lawsuits have been filed against the company from NCDEQ and Cape Fear River Watch to cease releases and provide financial compensation. Sampling and analysis of GenX and related compounds is outside of the purview of the scientific staff of the Lower Cape Fear River Program and will not be discussed in this report.

Summary of water quality data results from 2018 – The major single impact of 2018 was the arrival of **Hurricane Florence**, which dumped approximately two feet of water on the region in September 2018 (Plate 1). Biochemical oxygen-demanding materials from industrial livestock production facilities, wastewater treatment plants, flooded septic systems and natural debris caused very low dissolved oxygen (DO) concentrations in all major rivers, but especially in the Northeast Cape Fear River, where DO dropped down to 0.2 mg/L for weeks at the two LCFRP sites. Massive fish kills occurred in that river as well as the mainstem Cape Fear River (Plate 1). We note, however, that even before the storm DO concentrations were very low in some areas, often falling below 4.0 mg/L at several blackwater and upper estuary stations.

Year after year there is a dissolved oxygen sag in the main river channel that begins at Station DP below a paper mill discharge and near the Black River input, and persists into the mesohaline portion of the estuary. Mean oxygen levels are highest at the upper river stations NC11 and ANC and in the low-to-middle estuary at stations M35 to M18. Lowest mainstem mean DO levels normally occur at the river and upper estuary stations NAV, HB, BRR and M61. The Northeast Cape Fear and Black Rivers are classified as blackwater systems because of their tea colored water. The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River.

Dissolved oxygen concentrations in the tributary streams were briefly impacted by the hurricane, but some are chronically bad year-after-year. In 2018 SC-CH and GS were below standard 27% of the time sampled, and NC403 and AC below standard 18% of the time. Considering all sites sampled in 2018, we rated 28% as poor for dissolved oxygen, 16% as fair, and 56% as good.

Annual mean turbidity levels for 2018 were lower than the long-term average in all estuary stations. Highest mean riverine turbidities were at NC11-DP (26-19 NTU) with turbidities generally low in the middle to lower estuary. The estuarine stations did not exceed the estuarine turbidity standard on our sampling trips. Turbidity was considerably lower in the Northeast Cape Fear River and Black River than in the mainstem river. Turbidity levels were low in the freshwater streams, with all streams rated as good for 2018.

Average chlorophyll a concentrations across most sites were low in 2018. The standard of 40 μ g/L was exceeded once at Station SR, and there were several smaller algal blooms as well. We note the highest chlorophyll a levels in the river and estuary typically occur late spring to late-summer.

High river discharge prevents riverine algal blooms from forming. For 2018, discharge at Lock and Dam #1 in the May-September growing season (8,590 CFS) was 4X the 2009-2012 low-flow period average of 1,698 CFS. Nuisance cyanobacterial blooms did not occur in the river and upper estuary in 2018, probably due to the elevated discharge washing out any algal bloom formation. For the 2018 period UNCW rated 97% of the stations as good in terms of chlorophyll *a*.

Fecal bacteria counts in the estuary and at many of the stream stations were elevated in 2018. Almost all of the stream stations in the Northeast Cape Fear and Black River basins were rated as poor for fecal coliform bacteria counts. However, the main river and estuary sites were generally in good condition in 2018. For bacterial water quality overall, 39% of the sites rated as poor, 22% as fair, and 39% as good in 2018.

In addition, by our UNCW standards excessive nitrate and phosphorus concentrations were problematic at a number of stations.

Plate 1. Hurricane Florence high water marks along the Cape Fear River and Harrison's Creek, dead fish at Lock and Dam #1, flooded poultry and swine lagoons (CAFO photos W. Golder, Audubon), and dead fish at Northeast Cape Fear River boat ramp (photos M. Mallin unless noted otherwise).

Table of Contents

Exe	ecutive Summary	1
1.0	Introduction	5
	1.1 Site Description	6 7
2.0	Physical, Chemical, and Biological Characteristics of the Lower Cape Fear Rivand Estuary	
	Physical Parameters	14
	Chemical Parameters	18
	Biological Parameters	21

1.0 Introduction

Michael A. Mallin
Aquatic Ecology Laboratory
Center for Marine Science
University of North Carolina Wilmington

The Lower Cape Fear River Program is a unique science and education program that has a mission to develop an understanding of processes that control and influence the ecology of the Cape Fear River, and to provide a mechanism for information exchange and public education. This program provides a forum for dialogue among the various Cape Fear River user groups and encourages interaction among them. Overall policy is set by an Advisory Board consisting of representatives from citizen's groups, local government, industries, academia, the business community, and regulatory agencies. This report represents the scientific conclusions of the UNCW researchers participating in this program and does not necessarily reflect opinions of all other program participants. This report focuses on the period January through December 2018.

The scientific basis of the LCFRP consists of the implementation of an ongoing comprehensive physical, chemical, and biological monitoring program. Another part of the mission is to develop and maintain a data base on the Cape Fear basin and make use of this data to develop management plans. Presently the program has amassed a 24-year (1995-2018) data base that is available to the public, and is used as a teaching tool. Using this monitoring data as a framework the program goals also include focused scientific projects and investigation of pollution episodes. The scientific aspects of the program are carried out by investigators from the University of North Carolina Wilmington Center for Marine Science. The monitoring program was developed by the Lower Cape Fear River Program Technical Committee, which consists of representatives from UNCW, the North Carolina Division of Environmental Quality, The NC Division of Marine Fisheries, the US Army Corps of Engineers, technical representatives from streamside industries, the Cape Fear Public Utility Authority, Cape Fear Community College, Cape Fear River Watch, the North Carolina Cooperative Extension Service, the US Geological Survey, forestry and agriculture organizations, and others. This integrated and cooperative program was the first of its kind in North Carolina. The physical, chemical and biological data are state-certified and submitted to the US EPA.

Broad-scale monthly water quality sampling at 16 stations in the estuary and lower river system began in June 1995 (UNCW Aquatic Ecology Laboratory, directed by Dr. Michael Mallin). Sampling was increased to 34 stations in February of 1996, 35 stations in February 1998, and 36 stations in 2005, then lowered to 33 in 2011; currently it stands at 32 water quality stations. The Lower Cape Fear River Program added another component concerned with studying the benthic macrofauna of the system in 1996. This component is directed by Dr. Martin Posey and Mr. Troy Alphin of the UNCW Biology Department and includes the benefit of additional data collected by the

Benthic Ecology Laboratory under various grant-funded projects in the Cape Fear Estuary. These data are collected and analyzed depending upon the availability of funding. The third major biotic component (added in January 1996) was an extensive fisheries program directed by Dr. Mary Moser of the UNCW Center for Marine Science Research, with subsequent (1999) overseeing by Mr. Michael Williams and Dr. Thomas Lankford of UNCW-CMS. This program involved cooperative sampling with the North Carolina Division of Marine Fisheries and the North Carolina Wildlife Resources Commission. The fisheries program ended in December 1999, but was renewed with additional funds from the Z. Smith Reynolds Foundation from spring – winter 2000.

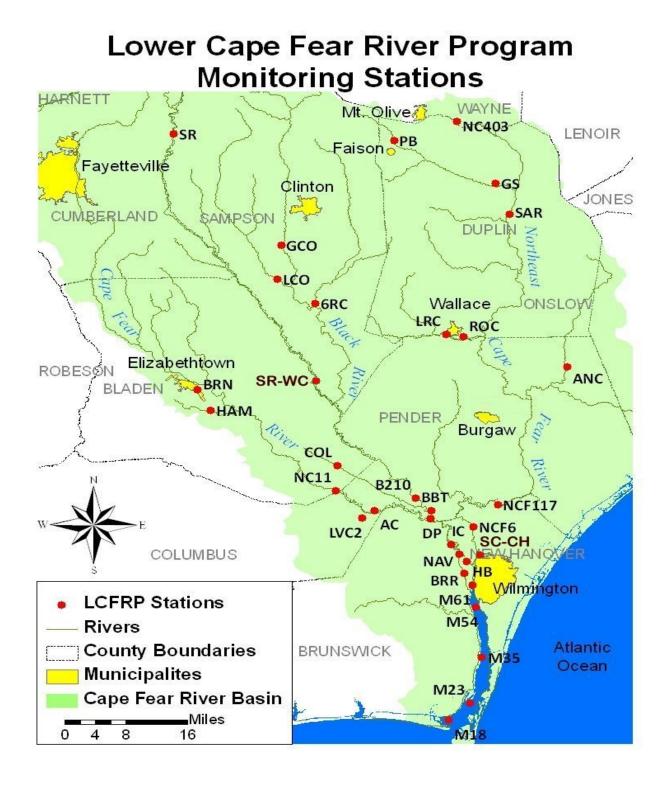
1.1. Site Description

The mainstem of the Cape Fear River is formed by the merging of the Haw and the Deep Rivers in Chatham County in the North Carolina Piedmont. However, its drainage basin reaches as far upstream as the Greensboro area (Fig. 1.1). The mainstem of the river has been altered by the construction of several dams and water control structures. In the Coastal Plain, the river is joined by two major tributaries, the Black and the Northeast Cape Fear Rivers (Fig. 1.1). These 5th order blackwater streams drain extensive riverine swamp forests and add organic color to the mainstem. The watershed (about 9,164 square miles) is the most heavily industrialized in North Carolina with 203 permitted wastewater discharges with a permitted flow of approximately 429 million gallons per day, and (as of 2010) over 2.07 million people residing in the basin (NCDENR Basinwide Information Management System (BIMS) & 2010 Census). Approximately 23% of the land use in the watershed is devoted to agriculture and livestock production (2006 National Land Cover Dataset), with livestock production dominated by swine and poultry operations. Thus, the watershed receives considerable point and non-point source loading of pollutants. However, the estuary is a well-flushed system, with flushing time ranging from 1 to 22 days with a median flushing time of about seven days, much shorter than the other large N.C. estuaries to the north (Ensign et al. 2004).

Water quality is monitored by boat at eight stations in the Cape Fear Estuary (from Navassa to Southport) and one station in the Northeast Cape Fear Estuary (Table 1.1; Fig. 1.1). We note that after July 2011 sampling was discontinued at estuarine stations M42 and SPD, per agreement with the North Carolina Division of Water Quality; and in 2012 sampling was expanded at Smith Creek at the Castle Hayne Road bridge (Table 1.1) and initiated at a new site along the South River (SR-WC). Riverine stations sampled by boat include NC11, AC, DP, IC, and BBT (Table 1.1; Fig. 1.1). NC11 is located upstream of any major point source discharges in the lower river and estuary system, and is considered to be representative of water quality entering the lower system (we note that the City of Wilmington and portions of Brunswick County get their drinking water from the river just upstream of Lock and Dam #1). Station BBT is located on the Black River between Thoroughfare (a stream connecting the Cape Fear and Black Rivers) and the mainstem Cape Fear, and is influenced by both rivers. We consider B210 and NCF117 to represent water quality entering the lower Black and Northeast Cape Fear Rivers, respectively. Data has also been collected at stream and

river stations throughout the Cape Fear, Northeast Cape Fear, and Black River watersheds (Table 1.1; Fig. 1.1; Mallin et al. 2001).

1.2. Report Organization


Section 1 of this report provides a summary and introduction, and Section 2 of this report presents a detailed overview of physical, chemical, and biological water quality data from the 32 individual stations, and provides tables of raw data as well as figures showing spatial or temporal trends. LCFRP data are freely available to the public. The LCFRP has a website that contains maps and an extensive amount of past water quality, benthos, and fisheries data gathered by the Program available at: http://lcfrp.uncw.edu/cms/aelab/LCFRP/. Additionally, there is an on-line data base.

References Cited

- Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. *Computers and Geosciences* 30:501-511.
- Mallin, M.A., S.H. Ensign, M.R. McIver, G.C. Shank and P.K. Fowler. 2001. Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. *Hydrobiologia* 460:185-193.

Collected by	Boat							
AEL Station	DWR Station #	Description	Comments	County	Lat	Lon	Stream Class.	HUC
NC11	B8360000	Cape Fear River at NC 11 nr East Arcadia	Below Lock and Dam 1, Represents water entering lower basin	Bladen	34.3969	-78.2675	WS-IV Sw	03030005
AC	B8450000	Cape Fear River at Neils Eddy Landing nr Acme	1 mile below IP, DWR ambient station	Columbus	34.3555	-78.1794	C Sw	03030005
DP	B8465000	Cape Fear River at Intake nr Hooper Hill	AT DAK intake, just above confluence with Black R.	Brunswick	34.3358	-78.0534	C Sw	03030005
BBT		Black River below Lyons Thorofare	UNCW AEL station	Pender	34.3513	-78.0490	C Sw ORW+	0303005
IC	B9030000	Cape Fear River ups Indian Creek nr Phoenix	Downstream of several point source discharges	Brunswick	34.3021	-78.0137	C Sw	0303005
NAV	B9050025	Cape Fear River dns of RR bridge at Navassa	Downstream of several point source discharges	Brunswick	34.2594	-77.9877	SC	0303005
НВ	B9050100	Cape Fear River at S. end of Horseshoe Bend nr Wilmington	Upstream of confluence with NE Cape Fear River	Brunswick	34.2437	-77.9698	SC	0303005
BRR	B9790000	Brunswick River dns NC 17 at park nr Belville	Near Belville discharge	Brunswick	34.2214	-77.9787	SC	03030005
M61	B9800000	Cape Fear River at Channel Marker 61 at Wilmington	Downstream of several point source discharges	New Hanover	34.1938	-77.9573	SC	03030005
M54	B9795000	Cape Fear River at Channel Marker 54	Downstream of several point source discharges	New Hanover	34.1393	-77.946	SC	03030005
M35	B9850100	Cape Fear River at Channel Marker 35	Upstream of Carolina Beach discharge	Brunswick	34.0335	-77.937	SC	03030005
M23	B9910000	Cape Fear River at Channel Marker 23	Downstream of Carolina Beach discharge	Brunswick	33.9456	-77.9696	SA HQW	03030005
M18	B9921000	Cape Fear River at Channel Marker 18	Near mouth of Cape Fear River	Brunswick	33.913	-78.017	SC	03030005
NCF6	B9670000	NE Cape Fear nr Wrightsboro	Downstream of several point source discharges	New Hanover	34.3171	-77.9538	C Sw	0303007
			distinges					
Collected by	Land		Upstream of Black River, CAFOs in					
6RC	B8740000	Six Runs Creek at SR 1003 nr Ingold	watershed	Sampson	34.7933	-78.3113	C Sw ORW+	03030006
LCO	B8610001	Little Coharie Creek at SR 1207 nr Ingold	Upstream of Great Coharie, CAFOs in watershed	Sampson	34.8347	-78.3709	C Sw	03030006
GCO	B8604000	Great Coharie Creek at SR 1214 nr Butler Crossroads	Downstream of Clinton, CAFOs in watershed	Sampson	34.9186	-78.3887	C Sw	03030006
SR	B8470000	South River at US 13 nr Cooper	Downstream of Dunn	Sampson	35.156	-78.6401	C Sw	03030006
BRN	B8340050	Browns Creek at NC87 nr Elizabethtown	CAFOs in watershed	Bladen	34.6136	-78.5848	С	03030005
HAM	B8340200	Hammond Creek at SR 1704 nr Mt. Olive	CAFOs in watershed	Bladen	34.5685	-78.5515	С	03030005
COL	B8981000	Colly Creek at NC 53 at Colly	Pristine area	Bladen	34.4641	-78.2569	C Sw	03030006
B210	B9000000	Black River at NC 210 at Still Bluff	1st bridge upstream of Cape Fear River	Pender	34.4312	-78.1441	C Sw ORW+	03030006
NC403	B9090000	NE Cape Fear River at NC 403 nr Williams	Downstream of Mt. Olive Pickle, CAFOs in watershed	Duplin	35.1784	-77.9807	C Sw	0303007
PB	B9130000	Panther Branch (Creek) nr Faison	Downstream of Bay Valley Foods	Duplin	35.1345	-78.1363	C Sw	0303007
GS	B9191000	Goshen Swamp at NC 11 and NC 903 nr Kornegay	CAFOs in watershed	Duplin	35.0281	-77.8516	C Sw	0303007
SAR	B9191500	NE Cape Fear River SR 1700 nr Sarecta	Downstream of several point source discharges	Duplin	34.9801	-77.8622	C Sw	0303007
ROC	B9430000	Rockfish Creek at US 117 nr Wallace	Upstream of Wallace discharge	Duplin	34.7168	-77.9795	C Sw	0303007
LRC	B9460000	Little Rockfish Creek at NC 11 nr Wallace	DWR Benthic station	Duplin	34.7224	-77.9814	C Sw	0303007
ANC	B9490000	Angola Creek at NC 53 nr Maple Hill	DWR Benthic station	Pender	34.6562	-77.7351	C Sw	0303007
SR WC	B8920000	South River at SR 1007	Upstream of Black River	Sampson	34.6402	-78.3116	C Sw ORW+	03030006
NCF117	B9580000	(Wildcat/Ennis Bridge Road) NE Cape Fear River at US 117 at	DWR ambient station, Downstream	New Hanover	34.3637	-77.8965	B Sw	0303007
		Castle Hayne Smith Creek at US 117 and NC 133 at	of point source discharges Urban runoff, Downstream of	New Hanover	34.2586	-77.9391	C Sw	0303007

Figure 1.1. Map of the Lower Cape Fear River system and the LCFRP sampling stations.

2.0 Physical, Chemical, and Biological Characteristics of the Lower Cape Fear River and Estuary

Michael A. Mallin and Matthew R. McIver Aquatic Ecology Laboratory Center for Marine Science University of North Carolina Wilmington

2.1 - Introduction

This section of the report includes a discussion of the physical, chemical, and biological water quality parameters, concentrating on the January-December 2018 Lower Cape Fear River Program monitoring period. These parameters are interdependent and define the overall condition of the river. Physical parameters measured during this study included water temperature, dissolved oxygen, field turbidity and laboratory turbidity, total suspended solids (TSS), salinity, conductivity, pH and light attenuation. The chemical makeup of the Cape Fear River was investigated by measuring the magnitude and composition of nitrogen and phosphorus in the water, and metals as requested by NCDEQ. Selected biological parameters including fecal coliform bacteria or *Enterococcus* bacteria and chlorophyll *a* were examined.

2.2 - Materials and Methods

Samples and field parameters collected for the estuarine stations of the Cape Fear River (NAV down through M18) were gathered (when possible) on an ebb tide. This was done so that the data better represented the river water flowing downstream through the system rather than the tidal influx of coastal ocean water. Sample collection and analyses were conducted according to the procedures in the Lower Cape Fear River Program Quality Assurance/Quality Control (QA/QC) manual. Technical Representatives from the LCFRP Technical Committee and representatives from the NC Division of Environmental Quality inspect UNCW laboratory procedures and periodically accompany field teams to verify proper procedures are followed. By agreement with N.C. Division of Environmental Quality, changes have periodically occurred in the sampling regime. Station SCCH (lower Smith Creek) was added October 2004; sampling was discontinued at Stations M42 and SPD (June 2011); sampling at Stations BCRR and BC117 was discontinued (December 2012); sampling was added at Station SR-WC on the South River (March 2013); and sampling was discontinued at Station LVC2 (July 2015). Special sampling for dissolved metals was initiated at selected stations by NCDEQ in 2015 and is ongoing.

Physical Parameters

Water Temperature, pH, Dissolved Oxygen, Turbidity, Light, Salinity, Conductivity

Field parameters other than light attenuation were measured at each site using a YSI 6920/650 MDS or YSI EXO3. Each parameter is measured with individual probes on the sonde. At stations sampled by boat (see Table 1.1) physical parameters were measured

at 0.1 m and at the bottom (up to 12 m); only surface data are reported within. Occasionally, high flow prohibited the sonde from reaching the actual bottom and measurements were taken as deep as possible. At the terrestrially sampled stations (i.e. from bridges or docks) the physical parameters were measured at a depth of 0.1 m. The Aquatic Ecology Laboratory at the UNCW CMS is State-certified by the N.C. Division of Environmental Quality to perform field parameter measurements. The light attenuation coefficient *k* was determined from data collected on-site using vertical profiles obtained by a Li-Cor LI-1000 integrator interfaced with a Li-Cor LI-193S spherical quantum sensor.

Chemical Parameters

Nutrients

A local State-certified analytical laboratory was contracted to conduct all chemical analyses except for orthophosphate, which is performed at CMS. The following methods detail the techniques used by CMS personnel for orthophosphate analysis.

Orthophosphate (PO₄-3)

Water samples were collected ca. 0.1 m below the surface in triplicate in amber 125 mL Nalgene plastic bottles and placed on ice. In the laboratory 50 mL of each triplicate was filtered through separate1.0 micron pre-combusted glass fiber filters, which were frozen and later analyzed for chlorophyll a. The triplicate filtrates were pooled in a glass flask, mixed thoroughly, and approximately 100 mL was poured into a 125 mL plastic bottle to be analyzed for orthophosphate. Samples were frozen until analysis.

Orthophosphate analyses were performed in duplicate using an approved US EPA method for the Bran-Lubbe AutoAnalyzer (Method 365.5). In this technique the orthophosphate in each sample reacts with ammonium molybdate and anitmony potassium tartrate in an acidic medium (sulfuric acid) to form an anitmony-phospho-molybdate complex. The complex is then reacted with ascorbic acid and forms a deep blue color. The intensity of the color is measured at a wavelength of 880 nm by a colorimeter and displayed on a chart recorder. Standards and spiked samples were analyzed for quality assurance.

Biological Parameters

Fecal Coliform Bacteria / Enterococcus

Fecal coliform bacteria were analyzed by a State-certified laboratory contracted by the LCFRP. Samples were collected approximately 0.1 m below the surface in sterile plastic bottles provided by the contract laboratory and placed on ice for no more than six hours before analysis. After August 2011 the fecal coliform analysis was changed to *Enterococcus* bacteria in the estuarine stations downstream of NAV and HB (Stations BRR, M61, M35, M23 and M18).

Chlorophyll a

The analytical method used to measure chlorophyll *a* is described in Welschmeyer (1994) and US EPA (1997) and was performed by UNCW Aquatic Ecology Laboratory personnel. Chlorophyll *a* concentrations were determined utilizing the 1.0 micron filters used for filtering samples for orthophosphate analysis. All filters were wrapped individually in foil, placed in airtight containers and stored in the freezer. During analysis each filter was immersed in 10 mL of 90% acetone for 24 hours, which extracts the chlorophyll *a* into solution. Chlorophyll *a* concentration of each solution was measured on a Turner 10-AU fluorometer. The fluorometer uses an optimal combination of excitation and emission bandwidth filters which reduces the errors inherent in the acidification technique. The Aquatic Ecology Laboratory at the CMS is State-certified by the N.C. Division of Environmental Quality for the analysis of chlorophyll *a* (chlorophyll at three LCFRP stations are required by NCDEQ to be analyzed by state-certified methods); the rest of the large amount of chlorophyll a data presented here were not State-certified.

Biochemical Oxygen Demand (BOD)

Five sites were originally chosen for BOD analysis. One site was located at NC11, upstream of International Paper, and a second site was at AC, about 3 miles downstream of International Paper (Fig.1.1). Two sites were located in blackwater rivers (NCF117 and B210) and one site (BBT) was situated in an area influenced by both the mainstem Cape Fear River and the Black River. For the sampling period May 2000-April 2004 additional BOD data were collected at stream stations 6RC, LCO, GCO, BRN, HAM and COL in the Cape Fear and Black River watersheds. In May 2004 those stations were dropped and sampling commenced at ANC, SAR, GS, N403, ROC and BC117 in the Northeast Cape Fear River watershed for several years. BOD analysis was stopped in August 2015 due to insufficient program funding; previous BOD data are available from LCFRP.

Parameter	Method	NC DEQ Certified
Water Temperature	SM 2550B-2000	Yes
Dissolved Oxygen	SM 4500O G-2001	Yes
рН	SM 4500 H B-2000	Yes
Specific Conductivity	SM 2510 B-1997	Yes
Lab Turbidity	SM 2130 B-2001	Yes
Field Turbidity	SM 2130 B-2001	No
Chlorophyll a	EPA 445.0 Rev. 1.2	Yes
Biochemical Oxygen Demand	SM 5210 B-2001	No

Parameter	Method	NC DEQ Certified
Total Nitrogen	By addition	
Nitrate + Nitrite	EPA 353.2 Rev 2.0 1993	Yes
Total Kjeldahl Nitrogen	EPA 351.2 Rev 2.0 1993	Yes
Ammonia Nitrogen	EPA 350.1 Rev 2.0 1993	Yes
Total Phosphorus	SM 4500 P E-1999	Yes
Orthophosphate	EPA 365.5	No
Fecal Coliform	SM 9222 D-1997	Yes
Enterococcus	Enterolert IDEXX	Yes

2.3 - Results and Discussion

This section includes results from monitoring of the physical, biological, and chemical parameters at all stations for the time period January-December 2018. Discussion of the data focuses both on the river channel stations and stream stations, which sometimes reflect poorer water quality than the channel stations. The contributions of the two large blackwater tributaries, the Northeast Cape Fear River and the Black River, are represented by conditions at NCF117 and B210, respectively. As noted, the Cape Fear region experienced major impacts from Hurricane Florence in 2018; therefore this report reflects the impacts in fall; note that September sampling was missing from some stations due to lack of access.

Physical Parameters

Water temperature

Water temperatures at all stations ranged from 3.1 to 31.3°C, and individual station annual averages ranged from 15.2 to 19.1°C (Table 2.1). Highest temperatures occurred during July and lowest temperatures during January and February. Stream stations were generally cooler than river stations, most likely because of shading and lower nighttime air temperatures affecting the shallower waters.

Salinity

Salinity at the estuarine stations (NAV through M18; also NCF6 in the Northeast Cape Fear River) ranged from 0.0 to 31.4 practical salinity units (psu) and station annual means ranged from 0.1 to 22.3 psu (Table 2.2). Lowest salinities occurred in late spring and again in October following the heavy rains from the hurricane. As such, the annual mean salinities for 2018 were lower compared with the twenty-one year average for 1995-2017 (Figure 2.1). Two stream stations, NC403 and PB, had occasional oligonaline conditions due to discharges from pickle production facilities. SC-CH is a blackwater tidal creek that

enters the Northeast Cape Fear River upstream of Wilmington and salinity there ranged from 0.1 to 2.4 psu.

Conductivity

Conductivity at the estuarine stations ranged from 0.09 to 48.16 mS/cm and from 0.05 to 4.56 mS/cm at the freshwater stations (Table 2.3). Temporal conductivity patterns followed those of salinity. Dissolved ionic compounds increase the conductance of water, therefore, conductance increases and decreases with salinity, often reflecting river flow conditions due to rainfall. Stations PB and NC403 are below industrial discharges, and often have elevated conductivity. Smith Creek (SC-CH) is an estuarine tidal creek and the conductivity values reflect this (Table 2.3).

рΗ

System pH values ranged from 3.5 to 8.1 and station annual means ranged from 4.1 to 8.0 (Table 2.4). pH was typically lowest upstream due to acidic swamp water inputs and highest downstream as alkaline seawater mixes with the river water. Low pH values at COL predominate because of naturally acidic blackwater inputs in this wetland-rich rural watershed.

Dissolved Oxygen

Dissolved oxygen (DO) problems have long been a major water quality concern in the lower Cape Fear River and its estuary, and several of the tributary streams (Mallin et al. 1999; 2000; 2001; 2002; 2004; 2005; 2006). There is an annual dissolved oxygen sag in the main river channel that begins at DP below a paper mill discharge and persists into the mesohaline portion of the estuary (Fig. 2.2). Working synergistically to lower oxygen levels are two factors: lower oxygen carrying capacity in warmer water and increased bacterial respiration (or biochemical oxygen demand, BOD), due to higher temperatures in summer. Unlike other large North Carolina estuaries (the Neuse, Pamlico and New River) the Cape Fear estuary rarely suffers from dissolved oxygen stratification. This is because, despite salinity stratification the oxygen remains well mixed due to strong estuarine gravitational circulation and high freshwater inputs (Lin et al. 2006). Thus, hypoxia in the Cape Fear is present throughout the water column. Surface concentrations for all sites in 2018 ranged from 0.2 to 13.6 mg/L and station annual means ranged from 5.8 to 8.3 mg/L (Table 2.5). Overall, average dissolved oxygen levels were mixed in 2018 compared with the long-term average (Fig. 2.2). River dissolved oxygen levels were low during the summer (Table 2.5), often falling below the state standard of 5.0 mg/L at several river and upper estuary stations.

While DO concentrations were already low in summer the September arrival of Hurricane Florence brought approximately two feet of rain to the area, caused a massive BOD load from animal waste, sewage and natural swamp organic matter to drop DO lower than usual in October. Hurricane Florence led to the release of many millions of gallons of untreated or partially treated sewage due to system flooding, power failures, generator

damage and pump station failures. According to reported data, Fayetteville had > 7.6 million gallons reaching surface waters, Wilmington had to reroute 5.25 million gallons into the river, and Carolina Beach had to discharge 17.2 million gallons to the estuary. According to industry self-reporting, 49 swine waste lagoons serving concentrated animal feeding operations (CAFOs) either breached, overtopped or were inundated by floodwaters, and another 47 lagoons were possibly compromised by high freeboard in the lagoons. Many thousands of acres of swine sprayfields and poultry CAFO litterfields were inundated by floodwaters as well. The Northeast Cape Fear River stations (NCF117 and BCF6) were particularly hard hit by the BOD load, with DO dropping to 0.2 mg/L for several weeks. This caused massive fish kills in the system (see front cover) including endangered sturgeon

Overall for the year, stations M61 and M54 were below 5.0 mg/L on 45% or more of occasions sampled, NAV was below on 36% of occasions sampled, and HB and M35 below standard 27% of the time. Based on number of occasions the river stations were below 5 mg/L UNCW rated NAV, HB, M61, M54, M35 and BRR as poor for 2018; the lower estuary stations were rated as good. On a year-to-year basis, discharge of BOD waste from the paper/pulp mill just above the AC station (Mallin et al. 2003), as well as inflow of blackwater from the Northeast Cape Fear and Black Rivers, helps to decrease oxygen in the lower river and upper estuary. Additionally, algal blooms periodically form behind Lock and Dam #1 (including the blue-green algal blooms from 2009-2012), and the chlorophyll a they produce is strongly correlated with BOD at Station NC11 (Mallin et al. 2006); thus algal blooms do contribute to lower DO in the river. As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems. We note that due to the hurricane, DO conditions in the lower river and estuary in 2018 were worse than 2017.

The hurricane impacted the tributary stream stations in October, but DO levels recovered in November. Tributary Stations SC-CH and GS were below 4.0 mg/L on 27% of occasions sampled (rated poor), and NC403 and ANC 18% (rated fair) most others were in the good category (Table 2.5). Some hypoxia can be attributed to low summer water conditions and some potentially to CAFO runoff; however point-source discharges also likely contribute to low dissolved oxygen levels at NC403 and possibly SR, especially via nutrient loading (Mallin et al. 2001; 2002; 2004). Hypoxia is thus a continuing problem, with 32% of the sites impacted in 2017.

Field Turbidity

Field turbidity levels ranged from 0 to 87 Nephelometric turbidity units (NTU) and station annual means ranged from 3 to 26 NTU (Table 2.6). The State standard for estuarine turbidity is 25 NTU. Highest mean turbidities were at NC11-DP (26-19 NTU), with turbidities generally low in the middle to lower estuary (Figure 2.3). The estuarine stations did not exceed the estuarine turbidity standard on our 2018 sampling trips. As in the previous year, mean turbidity levels for 2018 were well below the long-term average at all estuary sites (Fig. 2.3). Turbidity was considerably lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river. Average turbidity

levels were low in the freshwater streams. The State standard for freshwater turbidity is 50 NTU.

Note: In addition to the laboratory-analyzed turbidity that are required by NCDWQ for seven locations, the LCFRP uses nephelometers designed for field use, which allows us to acquire in situ turbidity from a natural situation. North Carolina regulatory agencies are required to use turbidity values from water samples removed from the natural system, put on ice until arrival at a State-certified laboratory, and analyzed using laboratory nephelometers. Standard Methods notes that transport of samples and temperature change alters true turbidity readings. Our analysis of samples using both methods shows that lab turbidity is nearly always lower than field turbidity; thus we do not discuss lab turbidity in this report.

Total Suspended Solids (TSS)

An altered monitoring plan was developed for the LCFRP in September 2011. These changes were suggested by the NC Division of Environmental Quality (then DWQ). NCDEQ suggested the LCFRP stop monitoring TSS at Stations ANC, GS, 6RC, LCO, SR, BRN, HAM, COL, SR-WC and monitor turbidity instead. DWQ believed turbidity would be more useful than TSS in evaluating water quality at these stations because there are water quality standards for turbidity. TSS is used by the DWQ NPDES Unit to evaluate discharges. No LCFRP subscribers discharge in these areas.

Total suspended solid (TSS) values system wide ranged from 1.3 to 85.0 mg/L with station annual means from 2.3 to 27.3 mg/L (Table 2.7). The overall highest river values were at NC11 and AC. In the stream stations TSS was generally considerably lower than the river and estuary. Although total suspended solids (TSS) and turbidity both quantify suspended material in the water column, they do not always go hand in hand. High TSS does not mean high turbidity and vice versa. This anomaly may be explained by the fact that fine clay particles are effective at dispersing light and causing high turbidity readings, while not resulting in high TSS. On the other hand, large organic or inorganic particles may be less effective at dispersing light, yet their greater mass results in high TSS levels. While there is no NC ambient standard for TSS, many years of data from the lower Cape Fear watershed indicates that 25 mg/L can be considered elevated (reached on a few occasions in the 2018 data). The fine silt and clay in the upper to middle estuary sediments are most likely derived from the Piedmont and carried downstream to the estuary, while the sediments in the lowest portion of the estuary are marine-derived sands (Benedetti et al. 2006).

Light Attenuation

The attenuation of solar irradiance through the water column is measured by a logarithmic function (k) per meter. The higher this light attenuation coefficient is the more strongly light is attenuated (reduced through absorbance or reflection) in the water column. River and estuary light attenuation coefficients ranged from 0.74 to 7.10/m and station annual means ranged from 2.23 at M18 to 3.98 at NAV (Table 2.8). Elevated mean and median light

attenuation occurred from NC11 river downstream to M54 in the estuary (Table 2.8). In the Cape Fear system, light is attenuated by both turbidity and water color.

High light attenuation did not always coincide with high turbidity. Blackwater, though low in turbidity, will attenuate light through absorption of solar irradiance. At NCF6 and BBT, blackwater stations with moderate turbidity levels, light attenuation was high. Compared to other North Carolina estuaries the Cape Fear has generally high light attenuation. The high average light attenuation is a major reason why phytoplankton production in the major rivers and the estuary of the LCFR is generally low. Whether caused by turbidity or water color this attenuation tends to limit light availability to the phytoplankton (Mallin et al. 1997; 1999; 2004; Dubbs and Whalen 2008).

Chemical Parameters – Nutrients

Total Nitrogen

Total nitrogen (TN) is calculated from TKN (see below) plus nitrate; it is not analyzed in the laboratory. TN ranged from 50 (detection limit) to 6,480 μ g/L (at ROC) and station annual means ranged from 657 to 2,804 μ g/L (at NC403; Table 2.9). Previous research (Mallin et al. 1999) has shown a positive correlation between river flow and TN in the Cape Fear system. In the main river total nitrogen concentrations were highest and relatively similar between NC11 and AC, then declining into the lower estuary, most likely reflecting uptake of nitrogen into the food chain through algal productivity and subsequent grazing by planktivores as well as through dilution and marsh denitrification. The highest median TN value at the stream stations was at NC403 with 2,540 μ g/L; other elevated TN values were seen at ANC, ROC, 6RC and PB.

Nitrate+Nitrite

Nitrate+nitrite (henceforth referred to as nitrate) is the main species of inorganic nitrogen in the Lower Cape Fear River. Concentrations system wide ranged from 10 (detection limit) to 4,430 μg/L (at PB) and station annual means ranged from 24 to 1,858 μg/L (at NC403; Table 2.10). The highest average riverine nitrate levels were at NC11, AC and DP (734-660 µg/L) indicating that much of this nutrient is imported from upstream. Moving downstream, nitrate levels decrease most likely as a result of uptake by primary producers, microbial denitrification in riparian marshes and tidal dilution. Despite this, the rapid flushing of the estuary (Ensign et al. 2004) permits sufficient nitrate to enter the coastal ocean in the plume and contribute to offshore productivity (Mallin et al. 2005). Nitrate can limit phytoplankton production in the lower estuary in summer (Mallin et al. 1999). The blackwater rivers carried lower concentrations of nitrate compared to the mainstem Cape Fear stations; i.e. the Northeast Cape Fear River (NCF117 mean = 302 μg/L) and the Black River (B210 = 327 $\mu g/L$). Lowest river nitrate occurred during late spring and early summer. In general, average concentrations in 2018 for the mainstem river were lower than those of the average from 1995-2017 (Fig. 2.4); although nitrate concentrations posthurricane (October and November were elevated in the rivers compared with pre-storm values (Table 2.10).

Several stream stations showed high levels of nitrate on occasion including NC403, PB, ROC and 6RC. ROC and 6RC primarily receive non-point agricultural or animal waste drainage, while point sources contribute to NC403 and PB. In general, the stream stations showed elevated nitrate in late fall and early winter following the massive runoff from the storm in September. A considerable number of experiments have been carried out by UNCW researchers to assess the effects of nutrient additions to water collected from blackwater streams and rivers (i.e. the Black and Northeast Cape Fear Rivers, and Colly and Great Coharie Creeks). These experiments have collectively found that additions of nitrogen (as either nitrate, ammonium, or urea) significantly stimulate phytoplankton production and BOD increases. Critical levels of these nutrients were in the range of 200 to 500 μ g/L as N (Mallin et al. 1998; Mallin et al. 2001; Mallin et al. 2002, Mallin et al. 2004). Thus, we conservatively consider nitrate concentrations exceeding 500 μ g/L as N in Cape Fear watershed streams to be potentially problematic to the stream's environmental health.

Ammonium/ammonia

Ammonium concentrations ranged from 10 (detection limit) to 1,240 μg/L and station annual means ranged from 53 to 237 µg/L (Table 2.11). River areas with the highest mean ammonium levels this monitoring period included AC and DP, which are downstream of a pulp mill discharge, and M54 in the upper estuary near the Wilmington Southside Wastewater Treatment Plant. At the stream stations 2018 continued to be unusual in that Colly Creek (COL) showed multiple occasions of high ammonium. This station is in a wetland-rich watershed that has a low level of human development. Most previous years have showed generally low levels of ammonium; however, beginning in 2005 a few unusual peaks began to occur, which increased in magnitude and frequency after 2012, particularly in 2016, 2017 and 2018 (Fig. 2.6). We do not have a solid explanation for this increase in ammonium. We are aware that White Lake, located in the upper Colly Creek watershed has had increasing problems with eutrophication (NC DEQ 2017), with nearby upper groundwater and surface runoff showing elevated nutrient concentrations (especially ammonium; potentially from failing local sewage infrastructure in the densely-developed area immediately surrounding the lake). General nutrient concentrations in the lake have been increasing over time as well (NCDEQ 2017). Thus, possibly ammonium-rich drainage from this area has made its way down to the COL station. Additional areas with periodic elevated ammonium in 2018 included ANC, LRC and PB (Table 2.11).

Total Kjeldahl Nitrogen

Total Kjeldahl Nitrogen (TKN) is a measure of the total concentration of organic nitrogen plus ammonium. TKN ranged from 50 (detection limit) to 4,200 μ g/L and station annual means ranged from 468 to 1,464 μ g/L (Table 2.12). TKN concentration decreases oceanward through the estuary, likely due to ocean dilution and food chain uptake of nitrogen. Stations with highest median concentrations included ANC and COL. As with ammonium,

upper groundwater in the White Lake drainage contained high TKN (NC DEQ 2017), some of which may have gone downstream.

Total Phosphorus

Total phosphorus (TP) concentrations ranged from 10 (detection limit) to 1,390 μ g/L (at ROC) and station annual means ranged from 45 to 305 μ g/L (ROC; Table 2.13). For the mainstem and upper estuary, average TP for 2018 was higher than the 1995-2017 average; at all sites downstream of AC (Figure 2.6). In the river TP was highest at the upper riverine channel stations NC11, AC and DP and declined downstream into the estuary; there was an increase at M61, however. Some of this decline is attributable to the settling of phosphorus-bearing suspended sediments, yet incorporation of phosphorus into bacteria and algae is also responsible.

The experiments discussed above in the nitrate subsection also involved additions of phosphorus, either as inorganic orthophosphate or a combination of inorganic plus organic P. The experiments showed that additions of P exceeding 500 μ g/L led to significant increases in bacterial counts, as well as significant increases in BOD over control. Thus, we consider concentrations of phosphorus above 500 μ g/L to be potentially problematic to blackwater streams (Mallin et al. 1998; 2004). Streams periodically exceeding this critical concentration included ROC, GCO and ANC; NC403 and PB also yielded some high values. Stations NC403 and PB are downstream of an industrial wastewater discharge, while ROC, GCO and ANC are in non-point agricultural areas.

Orthophosphate

Orthophosphate ranged from 5 to 480 μ g/L and station annual means ranged from 6 to 170 μ g/L (Table 2.14). Much of the main river orthophosphate load is imported into the Lower Cape Fear system from upstream areas, as NC11 or AC typically have high levels; there are also inputs of orthophosphate from the paper mill above AC (Table 2.140. Orthophosphate can bind to suspended materials and is transported downstream via particle attachment; thus high levels of turbidity at the uppermost river stations may be an important factor in the high orthophosphate levels. Turbidity declines toward the lower estuary because of settling, and orthophosphate concentration also declines. In the estuary, primary productivity helps reduce orthophosphate concentrations by assimilation into biomass. Orthophosphate levels typically reach maximum concentrations during summertime, when anoxic sediment releases bound phosphorus. Also, in the Cape Fear Estuary, summer algal productivity is limited by nitrogen, thereby allowing the accumulation of orthophosphate (Mallin et al. 1997; 1999). In spring, productivity in the estuary is usually limited by phosphorus (Mallin et al. 1997; 1999).

ROC, ANC and GCO had the highest stream station orthophosphate concentrations. All of those sites are in non-point source areas.

Chemical Parameters - EPA Priority Pollutant Metals

The LCFRP had previously sampled for water column metals (EPA Priority Pollutant Metals) on a bimonthly basis. However, as of 2007 this requirement was suspended by the NC Division of Water Quality and these data are no longer collected by the LCFRP. Revised metals sampling (dissolved, not total metals) was re-initiated in late 2015 and continued periodically upon request from NCDEQ. Results showed that for both stations sampled (M35 and M23) concentrations of As, Cd, Cr, Cu, Pb, Ni and Zn were below detection limits on all sampling occasions. Iron (Fe) concentrations were measurable but not at harmful levels. There was one metals sample collected in December 2018 at IC and NAV, with no unusual or adversely high concentrations. Two more samples are scheduled for those locations for 2019.

Biological Parameters

Chlorophyll a

During this monitoring period, chlorophyll a was low in river and estuary locations (Table 2.15). The state standard was not exceeded in the river or estuary samples in 2018. We note that at the upper site NC11 it has been demonstrated that chlorophyll a biomass is significantly correlated with biochemical oxygen demand (BOD5 – Mallin et al. 2006). System wide, chlorophyll a ranged from undetectable to 43 μ g/L, and station annual means ranged from 1-13 μ g/L, generally low because of high river discharge in 2018 (see below). Production of chlorophyll a biomass is usually low to moderate in the rivers and estuary primarily because of light limitation by turbidity in the mainstem (Dubbs and Whalen 2008) and high organic color and low inorganic nutrients in the blackwater tributary rivers.

Spatially, along the river mainstem highest values are normally found in the mid-to-lower estuary stations because light becomes more available downstream of the estuarine turbidity maximum (Fig. 2.7). On average, flushing time of the Cape Fear estuary is rapid, ranging from 1-22 days with a median of 6.7 days (Ensign et al. 2004). This does not allow for much settling of suspended materials, leading to light limitation of phytoplankton production. However, under lower-than-average flows there is generally clearer water through less suspended material and less blackwater swamp inputs. We note that there were a series of problematic cyanobacterial (blue-green algae) blooms of Microcyctis aeruginosa on the mainstem river in summers of 2009-2012 (Isaacs et al. 2014). For the growing season May-September, long-term (1995-2018) average monthly flow at Lock and Dam #1 was approximately 3,631 CFS; however, for cyanobacterial bloom years 2009-2012 the growing season average flow was 1,698 CFS (USGS data; (http://nc.water.usgs.gov/realtime/real_time_cape_fear.html). For 2018, discharge in May-September (due to the hurricane) was more than triple the 2009-2012 average at 8,590 CFS. Nuisance cyanobacterial blooms did not occur in the river and upper estuary in 2018.

The blooms in 2009-2012 all occurred when average river discharge for May-September was below 1,900 CFS. Algal bloom formation was suppressed by elevated river flow in 2013-2014, 2016 and 2018, but flow in 2015 was well within the range when blooms can occur. Clearly other factors are at work in bloom formation.

Phytoplankton blooms occasionally occur at the stream stations, with a few occurring at various months in 2018 (Table 2.15). These streams are generally shallow, so vertical mixing does not carry phytoplankton cells down below the critical depth where respiration exceeds photosynthesis. In areas where the forest canopy opens up large blooms can occur. When blooms occur in blackwater streams they can become sources of BOD upon death and decay, reducing further the low summer dissolved oxygen conditions common to these waters (Mallin et al. 2001; 2002; 2004; 2006; 2015). A stream station bloom exceeding the state standard of 40 μ g/L occurred on one occasion at Station SR, and lesser blooms occurred on occasion at PB, N403, ROC, ANC and GS (Table 2.15).

Biochemical Oxygen Demand

Beginning in 2015 samples for BOD5 and BOD20 are no longer collected for the program due to insufficient funds.

Fecal Coliform Bacteria/ Enterococcus bacteria

Fecal coliform (FC) bacterial counts ranged from 5 to 60,000 CFU/100 mL (60,000 is the laboratory maximum) and station annual geometric means ranged from 12 to 340 CFU/100 mL (Table 2.17). The state human contact standard (200 CFU/100 mL) was exceeded in the mainstem river on a few occasions in 2018 (Table 2.17). The Northeast Cape Fear River showed unusually high fecal coliform counts in 2018, with NCF6 and NCF117 both exceeding the standard on three occasions. During 2018 some stream stations showed very high fecal coliform pollution levels. HAM exceeded 200 CFU/100 mL 73% of the time sampled; ROC 64%, BRN 55%, PB and LCO 46%, NC403 and SCH 36% and ANC and LRC 27% of the time sampled. One notably excessive count of 60,000 CFU/100 mL occurred at PB in July, while most other counts stayed below 2,000 CFU/100 mL. NC403 and PB are located below point source discharges and the other sites are primarily influenced by non-point source pollution. Beginning in 2015 but especially in 2017 COL had a number of unusually high fecal coliform counts; but counts were much lesser in 2018 (Fig. 2.5). Overall, 2018 was comparatively better than previous years, despite the hurricane. In fact, at most chronically polluted sites high counts were in spring and summer months before the hurricane, whereas the high counts immediately after the hurricane decreased rapidly after October (Table 2.16; Fig. 2.8). We speculate that the extreme rainfall and river discharge (25,600 CFS at Lock and Dam #1 in September) diluted fecal bacteria counts, despite the CAFO accidents and sewage discharges.

Enterococcus counts were initiated in the estuary in mid-2011, as this test is now the standard used by North Carolina regulators for swimming in salt waters. Sites covered by this test include BRR, M61, M54, M35, M23 and M18. The State has a single-sample level for Tier II swimming areas in which the enterococci level in a Tier II swimming area shall

not exceed a single sample of 276 enterococci per 100 milliliter of water (15A NCAC 18A .3402); the LCFRP is using this standard for the Cape Fear estuary samples in our rating system. As such, in 2018 this standard was not exceeded in the estuary samples. Geometric mean enterococcus counts for 2018 were lower than those of the 2012-2017 period for the lower Cape Fear Estuary (Fig. 2.8). Overall, elevated fecal coliform and *Enterococcus* counts are problematic in this system, with 61% of the stations rated as Fair or Poor in 2018 (although that was an improvement from 2017).

2.4 - References Cited

- APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, D.C.
- Benedetti, M.M., M.J. Raber, M.S. Smith and L.A. Leonard. 2006. Mineralogical indicators of alluvial sediment sources in the Cape Fear River basin, North Carolina. *Physical Geography* 27:258-281.
- Dubbs, L. L. and S.C. Whalen. 2008. Light-nutrient influences on biomass, photosynthetic potential and composition of suspended algal assemblages in the middle Cape Fear River, USA. *International Review of Hydrobiology* 93:711-730.
- Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. *Computers and Geosciences* 30:501-511.
- Isaacs, J.D., W.K. Strangman, M.A. Mallin, M.R. McIver, and J.L.C. Wright. 2014. Microcystins and two new micropeptin cyanopeptides produced by unprecedented *Microcystis aeruginosa* blooms in North Carolina's Cape Fear River. *Harmful Algae* 31:82-86.
- Lin, J. L. Xie, L.J. Pietrafesa, J. Shen, M.A. Mallin and M.J. Durako. 2006. Dissolved oxygen stratification in two microtidal partially-mixed estuaries. *Estuarine, Coastal and Shelf Science*. 70:423-437.
- Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1997. Nutrient limitation and eutrophication potential in the Cape Fear and New River Estuaries. Report No. 313. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 1998. Effect of organic and inorganic nutrient loading on photosynthetic and heterotrophic plankton communities in blackwater rivers. Report No. 315. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1999. Alternation of factors limiting phytoplankton production in the Cape Fear Estuary. *Estuaries* 22:985-996.

- Mallin, M.A., M.H. Posey, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2000. *Environmental Assessment of the Lower Cape Fear River System, 1999-2000.* CMS Report No. 00-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C.
- Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 2001. Effect of nitrogen and phosphorus loading on plankton in Coastal Plain blackwater streams. *Journal of Freshwater Ecology* 16:455-466.
- Mallin, M.A., L.B. Cahoon, M.R. McIver and S.H. Ensign. 2002. Seeking science-based nutrient standards for coastal blackwater stream systems. Report No. 341. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C.
- Mallin, M.A., M.R. McIver, S.H. Ensign and L.B. Cahoon. 2004. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. *Ecological Applications* 14:823-838.
- Mallin, M.A., L.B. Cahoon and M.J. Durako. 2005. Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems. *Estuarine, Coastal and Shelf Science* 62:55-62.
- Mallin, M.A., V.L. Johnson, S.H. Ensign and T.A. MacPherson. 2006. Factors contributing to hypoxia in rivers, lakes and streams. *Limnology and Oceanography* 51:690-701.
- Mallin, M.A., M.R. McIver, A.R. Robuck and A.K. Dickens. 2015. Industrial swine and poultry production causes chronic nutrient and fecal microbial stream pollution. *Water, Air and Soil Pollution* 226:407, DOI 10.1007/s11270-015-2669-y.
- NCDEQ 2017. 2017 White Lake Water Quality Investigation, White Lake, Bladen County (Cape Fear Basin). North Carolina Department of Environmental Quality, Division of Water Resources.
- U.S. EPA 1997. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices, 2nd Ed. EPA/600/R-97/072. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll *b* and phaeopigments. *Limnology and Oceanography* 39:1985-1993.

Table 2.1 Water temperature (°C) during 2018 at the Lower Cape Fear River Program stations.

																		HAM	9.9	12.0	15.2	17.1	19.4	24.1	24.5	26.1		12.4	18.6	7.0	16.6	6.7	17.1	26.1	9.9
																		BRN	6.2	12.8	16.7	17.8	20.0	24.5	25.2	26.3		14.3	19.7	7.9	17.4	6.7	17.8	26.3	6.2
																		SR	5.8	11.8	13.3	17.4	20.5	25.6	27.7	26.9		19.2	18.3	7.2	17.6	7.5	18.3	27.7	5.8
																		GCO	5.0	12.7	11.0	17.0	20.3	25.0	26.4	25.8		20.0	18.0	7.2	17.1	7.4	18.0	26.4	5.0
NCF6	4.3	8.5	13.3	16.7	20.1	26.0	27.5	26.3	29.4	27.7	18.5	10.5	19.1	8.5	19.3	29.4	4.3	Γ CO	6.5	14.3	11.4	16.5	19.9	24.2	25.4	25.4		20.8	17.1	11.9	17.6	6.2	17.1	25.4	6.5
C	3.2	8.2	12.3	16.2	20.3	27.1	28.7	27.4	29.0	25.4	17.6	9.2	18.7	0.6	19.0	29.0	3.2	6RC	7.3	14.6	11.3	16.4	19.0	24.1	25.2	25.5		20.9	17.2	11.6	17.6	6.1	17.2	25.5	7.3
BBT	2.4	8.0	13.1	16.8	19.8	26.2	28.9	27.3	28.6	25.5	17.5	9.2	18.6	0.6	18.7	28.9	2.4	SRWC	7.4	12.9	10.8	16.1	19.9	24.0	25.3	25.6		20.8	16.2	10.6	17.2	6.4	16.2	25.6	7.4
DP	4.4	8.0	11.8	16.3	18.1	27.3	29.3	27.2	29.2	25.1	17.0	9.0	18.6	8.9	17.6	29.3	4.	COL	5.5	13.4	10.8	17.2	18.3	23.7	24.8	27.6		20.5	18.0	12.0	17.4	9.9	18.0	27.6	5.5
AC	5.1	8.1	11.9	16.5	17.9	27.0	28.9	27.3	29.4	25.1	16.9	8.9	18.6	8.8	17.4	29.4	5.1	B210	8.9	12.8	10.8	18.1	20.0	24.7	27.0	27.0		21.8	17.0	10.7	17.9	7.0	18.1	27.0	8.9
NC11	4.4	8.4	11.8	15.8	17.9	27.2	28.8	27.1	29.4	25.1	17.0	8.8	18.5	8.9	17.5	29.4	4.4		JAN	FEB	MAR	APR	MAY	JUN	\mathbf{n}	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min
	JAN	FEB	MAR	APR	MAY	NO	\mathbf{n}	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min													•					
	•																																		
																		SC-CH	7.5	11.1	11.5	16.4	19.9	25.5	28.1	28.2		25.8	10.7	10.9	17.8	8.0	16.4	28.2	7.5
M18	4.7	9.4	12.8	15.1	25.3	27.2	29.9	28.6		25.5	19.2	12.5	19.1	8.7	19.2	29.9	4.7	NCF117 SC-CH			11.2 11.5										17.2 17.8				
M23 M18	4.2 4.7	9.3 9.4									17.2 19.2								8.1	9.1	11.2	16.8	18.7	25.0	28.5	26.8		25.2	9.6	10.7		7.9	16.8	28.5	8.1
			13.1	15.7	25.8	27.7	30.1			25.3	17.2	6.6	18.8	9.1	17.2	30.1	4.2	ROC NCF117	4.2 8.1	12.1 9.1	11.2	12.3 16.8	17.3 18.7	23.1 25.0	25.8 28.5	25.6 26.8		24.1 25.2	9.6 8.9	9.7	17.2	8.1 7.9	12.3 16.8	25.8 28.5	4.2 8.1
M23	4.1	6.6	13.6 13.1	16.1 15.7	25.4 25.8	28.0 27.7	30.1	28.2 28.7		24.4 25.3	17.2	6.6 6.6	18.9 18.8	9.0 9.1	17.3 17.2	30.8 30.1	4.1 4.2	ROC NCF117	5.2 4.2 8.1	11.7 12.1 9.1	9.1 8.3 11.2	13.8 12.3 16.8	18.6 17.3 18.7	24.8 23.1 25.0	26.6 25.8 28.5	24.9 25.6 26.8		25.3 24.1 25.2	7.9 6.8 9.6	10.2 9.7 10.7	15.4 17.2	8.1 8.1 7.9	13.8 12.3 16.8	26.6 25.8 28.5	5.2 4.2 8.1
M35 M23	3.9 4.1	9.4 9.9	13.0 13.6 13.1	16.6 16.1 15.7	25.4 25.4 25.8	28.6 28.0 27.7	30.7 30.8 30.1	28.2 28.7		23.7 24.4 25.3	17.3 17.2	9.0 9.9 9.9	18.7 18.9 18.8	9.1 9.0 9.1	17.1 17.3 17.2	30.7 30.8 30.1	3.9 4.1 4.2	3 PB LRC ROC NCF117	3.2 5.2 4.2 8.1	10.3 11.7 12.1 9.1	9.1 8.3 11.2	13.3 13.8 12.3 16.8	18.0 18.6 17.3 18.7	24.6 24.8 23.1 25.0	27.3 26.6 25.8 28.5	26.8 24.9 25.6 26.8		24.3 25.3 24.1 25.2	6.1 7.9 6.8 9.6	7.7 10.2 9.7 10.7	16.2 15.4 17.2	9.2 8.1 8.1 7.9	13.3 13.8 12.3 16.8	27.3 26.6 25.8 28.5	3.2 5.2 4.2 8.1
M54 M35 M23	4.0 3.9 4.1	8.8 9.4 9.9	12.8 13.0 13.6 13.1	16.6 16.6 16.1 15.7	25.3 25.4 25.4 25.8	27.8 28.6 28.0 27.7	30.7 30.8 30.1	27.6 27.9 28.2 28.7		23.6 23.7 24.4 25.3	17.1 17.3 17.2	9.0 9.0 9.9	18.5 18.7 18.9 18.8	9.1 9.1 9.0 9.1	17.1 17.1 17.3 17.2	31.0 30.7 30.8 30.1	4.0 3.9 4.1 4.2	NC403 PB LRC ROC NCF117	3.6 3.2 5.2 4.2 8.1	11.2 10.3 11.7 12.1 9.1	7.0 9.1 8.3 11.2	13.2 13.3 13.8 12.3 16.8	20.2 18.0 18.6 17.3 18.7	24.2 24.6 24.8 23.1 25.0	26.8 27.3 26.6 25.8 28.5	26.2 26.8 24.9 25.6 26.8		25.3 24.3 25.3 24.1 25.2	7.3 6.1 7.9 6.8 9.6	9.6 7.7 10.2 9.7 10.7	15.3 16.2 15.4 17.2	8.8 9.2 8.1 8.1 7.9	13.2 13.3 13.8 12.3 16.8	26.8 27.3 26.6 25.8 28.5	3.6 3.2 5.2 4.2 8.1
M61 M54 M35 M23	4.0 4.0 3.9 4.1	8.5 8.8 9.4 9.9	12.1 12.8 13.0 13.6 13.1	16.0 16.6 16.6 16.1 15.7	25.7 25.3 25.4 25.4 25.8	29.2 27.8 28.6 28.0 27.7	31.0 31.0 30.7 30.8 30.1	27.6 27.9 28.2 28.7		22.6 23.6 23.7 24.4 25.3	17.1 17.1 17.3 17.2	8.3 9.0 9.0 9.9 9.9	18.3 18.5 18.7 18.9 18.8	9.5 9.1 9.1 9.0 9.1	16.2 17.1 17.1 17.3 17.2	31.0 31.0 30.7 30.8 30.1	4.0 4.0 3.9 4.1 4.2	NC403 PB LRC ROC NCF117	4.5 3.6 3.2 5.2 4.2 8.1	11.6 11.2 10.3 11.7 12.1 9.1	8.6 7.3 7.0 9.1 8.3 11.2	13.4 13.2 13.3 13.8 12.3 16.8	21.0 20.2 18.0 18.6 17.3 18.7	25.2 24.2 24.6 24.8 23.1 25.0	26.1 26.8 27.3 26.6 25.8 28.5	26.0 26.2 26.8 24.9 25.6 26.8		26.6 25.3 24.3 25.3 24.1 25.2	6.6 7.3 6.1 7.9 6.8 9.6	9.2 9.6 7.7 10.2 9.7 10.7	15.9 15.3 16.2 15.4 17.2	8.8 8.8 9.2 8.1 8.1 7.9	13.4 13.2 13.3 13.8 12.3 16.8	26.6 26.8 27.3 26.6 25.8 28.5	4.5 3.6 3.2 5.2 4.2 8.1
BRR M61 M54 M35 M23	3.7 4.0 4.0 3.9 4.1	8.5 8.5 8.8 9.4 9.9	13.0 12.1 12.8 13.0 13.6 13.1	16.0 16.0 16.6 16.6 16.1 15.7	25.7 25.7 25.3 25.4 25.4 25.8	26.7 29.2 27.8 28.6 28.0 27.7	31.0 31.0 30.7 30.8 30.1	27.8 28.1 27.6 27.9 28.2 28.7		22.5 22.6 23.6 23.7 24.4 25.3	16.2 17.1 17.1 17.3 17.2	8.7 8.3 9.0 9.0 9.9 9.9	18.2 18.3 18.5 18.7 18.9 18.8	9.2 9.5 9.1 9.1 9.0 9.1	16.5 16.2 17.1 17.1 17.3 17.2	31.3 31.0 31.0 30.7 30.8 30.1	3.7 4.0 4.0 3.9 4.1 4.2	GS NC403 PB LRC ROC NCF117	3.1 4.5 3.6 3.2 5.2 4.2 8.1	12.0 11.6 11.2 10.3 11.7 12.1 9.1	6.2 8.6 7.3 7.0 9.1 8.3 11.2	11.9 13.4 13.2 13.3 13.8 12.3 16.8	18.4 21.0 20.2 18.0 18.6 17.3 18.7	24.1 25.2 24.2 24.6 24.8 23.1 25.0	26.8 26.1 26.8 27.3 26.6 25.8 28.5	25.8 26.0 26.2 26.8 24.9 25.6 26.8		24.9 26.6 25.3 24.3 25.3 24.1 25.2	5.3 6.6 7.3 6.1 7.9 6.8 9.6	8.3 9.2 9.6 7.7 10.2 9.7 10.7	16.3 15.9 15.3 16.2 15.4 17.2	9.1 8.8 8.8 9.2 8.1 8.1 7.9	12.0 13.4 13.2 13.3 13.8 12.3 16.8	26.8 26.6 26.8 27.3 26.6 25.8 28.5	3.1 4.5 3.6 3.2 5.2 4.2 8.1

Table 2.2 Salinity (psu) during 2018 at the Lower Cape Fear River Program estuarine stations.

	NAV	HB	BRR	M61	M54	M35	M23	M18	NCF6	SC-CH
JAN	0.3	3.1	6.3	6.6	11.2	16.4	23.5	26.4	0.1	8.0
FEB	0.1	0.1	0.1	8.0	2.7	8.3	24.2	27.7	0.2	0.1
MAR	0.1	9.0	0.5	3.9	6.3	14.8	21.1	31.4	0.5	1.4
APR	0.1	0.1	2.0	0.9	9.4	14.3	20.0	23.4	0.1	1.0
MAY	0.1	0.1	0.1	0.2	1.8	5.5	13.0	18.6	0.0	0.1
JUN	0.1	0.0	0.1	0.2	1.0	3.1	9.1	16.4	0.0	0.1
IOL	0.3	0.7	2.5	5.9	8.0	13.7	22.4	26.1	0.1	2.4
AUG	0.0	0.0	0.0	0.0	0.1	1.3	7.0	8.2	0.0	0.1
SEP										
OCT	0.0	0.0	0.0	1.0	1.2	3.0	8.1	10.7	0.0	0.1
NOV	0.1	9.0	0.2	2.1	4.8	10.8	16.8	29.6	0.5	0.1
DEC	0.0	0.1	0.1	1.1	3.0	8.7	11.9	26.5	0.0	0.1
mean	0.1	0.5	1.1	2.8	4.5	9.1	16.1	22.3	0.1	9.0
std dev	0.1	6.0	1.9	3.2	3.7	5.3	6.5	7.7	0.2	8.0
median	0.1	0.1	0.1	1.1	3.0	8.7	16.8	26.1	0.1	0.1
max	0.3	3.1	6.3	6.6	11.2	16.4	24.2	31.4	0.5	2.4
min	0.0	0.0	0.0	0.0	0.1	1.3	7.0	8.2	0.0	0.1

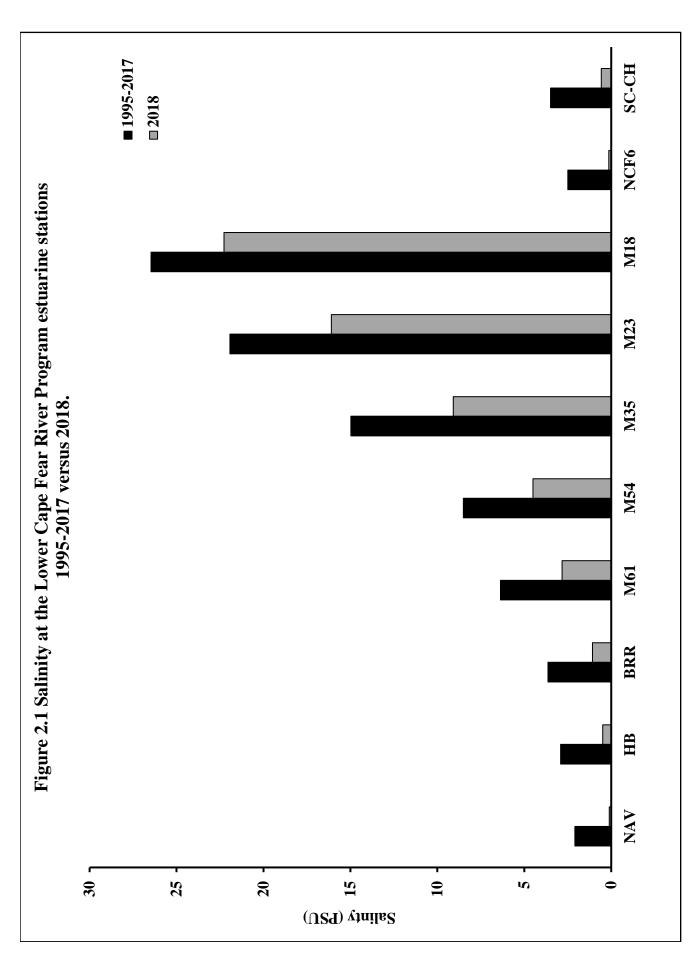


Table 2.3 Conductivity (mS/cm) during 2018 at the Lower Cape Fear River Program stations.

N	NAV	HB 5 82	BRR	M61	M54	M35	M23	M18	-	7	NC11	AC	DP	BBT	IC	NCF6			
FEB	0.07	0.18	0.22	1.51	4.99	14.29	38.25	43.12		FEB	0.15	0.18	0.18	0.17	0.17	0.31			
MAR	0.16	1.23	0.92	7.08	11.06	24.24	33.72	48.16		MAR	0.12	0.13	0.14	0.13	0.14	0.95			
APR	0.14	0.24	3.71	10.60	15.86	23.62	32.03	36.94		APR	0.12	0.11	0.14	0.12	0.13	0.13			
MAY	0.17	0.17	0.18	0.41	3.52	9.78	21.57	30.13		MAY	0.10	0.10	0.10	60.0	0.09	0.10			
NOI	0.11	0.09	0.14	0.49	2.00	5.81	15.60	26.78		NOI	0.10	0.12	0.15	60.0	0.11	0.07			
JOL	0.64	1.41	4.76	10.57	13.96	23.46	35.53	40.94		\mathbf{n}	0.14	0.13	0.22	0.18	0.16	0.12			
AUG	0.09	0.09	0.10	0.10	0.16	2.51	12.02	14.22		AUG	0.07	0.09	0.08	60.0	0.01	0.07			
SEP										SEP	0.13	0.24	0.16	0.12	0.17	2.75			
0CT	0.09	0.09	0.09	2.02	2.26	5.61	13.95	18.19		OCT	0.08	0.08	0.08	0.07	0.07	0.07			
NOV	0.10	1.20	0.43	3.90	8.64	18.19	27.07	45.52		NOV	0.10	0.11	0.12	0.11	0.11	1.02			
DEC	0.09	0.21	0.12	2.10	5.86	15.04	19.95	41.44	•	DEC	90.0	0.07	0.07	0.07	0.07	0.08			
mean	0.22	0.98	2.00	5.08	7.95	15.43	26.14	35.22	•	mean	0.11	0.14	0.14	0.11	0.12	0.49			
std dev	0.22	1.69	3.48	5.56	6.30	8.62	9.92	11.34		std dev	0.03	80.0	90.0	0.04	90.0	0.79			
median	0.14	0.21	0.22	2.10	5.86	15.04	27.07	40.94		median	0.11	0.12	0.14	0.11	0.12	0.12			
max	0.67	5.83	11.29	17.09	19.19	27.15	38.25	48.16		max	0.15	0.33	0.27	0.18	0.22	2.75			
min	0.09	0.09	0.09	0.10	0.16	2.51	12.02	14.22		min	90.0	0.07	0.07	0.07	0.01	0.07			
	ANC	SAR	GS	NC403	PB	LRC		NCF117	SC-CH	ļ		B210	COL	SRWC	6RC	Γ CO	GCO	\mathbf{SR}	BRN
JAN	0.09	0.16	0.15	0.56	0.46	0.12	0.15	60.0	1.61		JAN	0.10	90.0	80.0	0.16	0.10	0.13	60.0	0.16
FEB	0.08	0.16	0.20	0.40	0.85	0.12	0.14	0.11	0.26		FEB	0.10	90.0	80.0	0.15	0.11	0.13	0.10	0.16
MAR	0.08	0.18	0.16	0.57	0.50	0.12	0.14	0.14	2.62		MAR	0.10	90.0	0.07	0.14	0.09	0.13	0.08	0.14
APR	0.11	0.13	0.13	0.34	0.51	0.11	0.12	0.13	1.84		APR	0.09	90.0	0.07	0.11	0.08	0.15	0.08	0.11
MAY	0.09	0.15	0.13	0.38	1.75	0.11	0.11	0.08	0.12		MAY	0.09	90.0	80.0	0.15	0.10	0.17	0.09	0.14
NOI	0.07	0.18	0.16	0.30	1.24	0.09	0.11	0.08	0.07		NOT	0.08	90.0	0.07	0.13	0.10	0.13	0.08	0.12
JUL	0.07	0.30	0.28	1.59	4.56	0.16	0.18	0.13	4.52		\mathbf{n}	0.09	90.0	60.0	0.16	0.12	0.36	0.11	0.13
AUG	0.07	0.15	0.14	0.63	2.43	0.15	0.19	0.11	0.26		AUG	0.08	90.0	90.0	0.09	0.08	0.10	90.0	0.14
SEP											SEP								
0CT	90.0	0.16	0.15	0.45	0.87	0.13	0.12	0.09	0.17		OCT	60.0	90.0	0.07	0.13	0.10	0.15	0.08	0.12
NOV	0.07	0.16	0.14	0.39	0.47	0.12	0.14	0.10	0.15		NOV	0.10	0.05	0.07	0.14	0.10	0.15	0.07	0.12
DEC	0.08	0.14	0.13	0.33	0.44	0.12	0.13	0.11	0.11	I	DEC	0.07	0.05	90.0	0.11	0.08	0.10	0.06	0.10
mean	0.08	0.17	0.16	0.54	1.28	0.12	0.14	0.11	1.06		mean	0.09	90.0	0.07	0.13	0.10	0.16	0.08	0.13
std dev	0.01	0.05	0.04	0.36	1.26	0.02	0.03	0.02	1.45	•	std dev	0.01	0.00	0.01	0.02	0.01	0.07	0.02	0.02
median	0.08	0.16	0.15	0.40	0.85	0.12	0.14	0.11	0.26	-	median	60.0	90.0	0.07	0.14	0.10	0.13	0.08	0.13
max	0.11	0.30	0.28	1.59	4.56	0.16	0.19	0.14	4.52		max	0.10	90.0	60.0	0.16	0.12	0.36	0.11	0.16
min	90.0	0.13	0.13	0.30	9.0	0.09	0.11	0.08	0.07		min	0.07	0.05	90.0	0.09	0.08	0.10	90.0	0.10

0.14 0.18 0.16 0.10 0.17 0.13 0.16

0.18 0.17 0.14 0.03 0.03 0.16 0.18

Table 2.4 pH during 2018 at the Lower Cape Fear River Program stations.

	1										NCII	AC	10			2017		
JAN	7.5	7.4	7.5	9.7	7.8	8.0	8.1	8.1		\mathbf{JAN}	6.4	6.9	6.9	6.4	8.9	6.7		
FEB	6.4	6.5	7.0	8.9	7.3	7.7	8.1	8.1		FEB	6.2	9.9	6.7	6.7	6.7	6.4		
MAR	7.0	7.1	7.1	7.1	7.5	7.9	8.0	7.7		MAR	8.9	6.9	6.9	8.9	6.9	8.9		
APR	6.9	6.9	6.9	7.1	7.3	7.7	8.0	8.0		APR	6.9	6.9	8.9	6.7	8.9	8.9		
MAY	6.7	6.7	6.7	9.9	6.7	7.0	7.5	7.7		MAY	6.7	6.7	6.7	6.4	6.5	6.3		
NO	6.4	6.1	6.5	6.2	9.9	6.7	7.1	7.6		JUN	6.5	9.9	6.7	9	6.4	5.8		
\mathbf{n}	6.5	8.9	8.9	7.0	7.1	7.5	7.9	8.0		JOL	6.7	6.7	6.9	9.9	9.9	5.9		
AUG	6.2	6.3	6.3	0.9	6.3	6.5	6.9	7.0		AUG	6.2	6.2	6.2	6.1	6.2	5.7		
SEP										SEP	6.7	7.0	6.7	6.4	9.9	6.4		
OCT	6.4	6.5	6.7	9.9	8.9	7.0	7.1	7.4		OCT	6.4	6.2	6.1	5.8	5.9	5.5		
NOV	6.9	7.3	7.2	7.5	7.4	7.8	8.0	8.0		NOV	6.5	6.5	6.7	6.7	6.7	9.9		
DEC	7.1	7.1	7.6	7.0	7.6	7.8	7.9	8.0		DEC	6.1	5.8	5.7	5.5	5.6	5.7		
mean	6.7	8.9	6.9	6.9	7.1	7.4	7.7	7.8		mean	6.5	9.9	9.9	6.3	6.5	6.2		
std dev	0.4	0.4	6.4	0.5	0.5	0.5	0.5	0.3		std dev	0.3	0.4	0.4	0.4	0.4	0.5		
median	6.7	8.9	6.9	7.0	7.3	7.7	7.9	8.0	•	median	6.5	6.7	6.7	6.4	9.9	6.4		
max	7.5	7.4	7.6	9.7	7.8	8.0	8.1	8.1		max	6.9	7.0	6.9	8.9	6.9	8.9		
min	6.2	6.1	6.3	0.9	6.3	6.5	6.9	7.0		min	6.1	5.8	5.7	5.5	5.6	5.5		
	ANC	SAR	GS	NC403	PB	LRC	ROC	NCF117 SC	SC-CH			B210	COL	SRWC	6RC	Γ CO	GCO	\mathbf{SR}
JAN	4.9	6.4	6.7	9.9	9.9	6.5	6.1	5.9	6.3	l	JAN	5.5	3.6	5.6	6.3	5.9	6.0	5.8
FEB	5.2	6.5	6.4	6.7	9.9	6.7	6.5	5.6	6.2		FEB	5.4	3.9	5.3	6.3	6.3	6.3	0.9
MAR	5.3	6.4	6.9	6.5	6.7	6.9	6.5	9.9	6.5		MAR	8.9	4.0	6.1	6.9	6.7	6.7	6.5
APR	6.1	6.7	7.0	9.9	8.9	7.0	8.9	6.9	7.2		APR	6.3	4.1	5.9	9.9	6.2	9.9	6.3
MAY	6.1	6.7	8.9	8.9	9.9	7.1	6.7		6.4		MAY	6.3	4.0	6.3	7.1	6.9	6.9	6.3
NOI	8.4	6.7	6.7	6.4	9.9	8.9	9.9	0.9	6.1		JUN	6.1	4.0	5.9	8.9	6.7	9.9	6.2
JUL	9	8.9	7.0	7.0	7.0	7.7	7.0		6.4		\mathbf{nr}	6.1	4.0	6.3	7.0	6.9	7.0	6.7
AUG	5.7	6.4	6.5	9.9	6.7	7.1	6.9		6.9		AUG	0.9	3.9	5.7	6.3	5.7	6.2	5.9
SEP											SEP							
OCT	4.3	6.4	6.7	9.9	9.9	6.9	6.4		6.3		OCT	0.9	4.1	5.9	9.9	6.5	6.4	6.2
NOV	8.4	6.4	8.9	9.9	9.9	6.3	6.4		6.3		NOV	0.9	4.1	5.9	9.9	6.5	9.9	6.3
DEC	5.0	6.5	8.9	9.9	6.7	6.7	6.5		6.3	•	DEC	5.4	3.5	5.1	5.8	5.7	9.9	6.5
mean	5.3	6.5	8.9	9.9	6.7	6.9	9.9		6.4		mean	6.0	3.9	5.8	9.9	6.4	6.5	6.2
std dev	9.0	0.2	0.2	0.2	0.1	0.4	0.3		0.3		std dev	0.4	0.2	0.4	0.4	0.4	0.3	0.3
median	5.2	6.5	8.9	9.9	9.9	6.9	6.5	0.9	6.3		median	0.9	4.0	5.9	9.9	6.5	9.9	6.3
max	6.1	8.9	7.0	7.0	7.0	7.7	7.0		7.2		max	8.9	4.1	6.3	7.1	6.9	7.0	6.7
min	4.3	6.4	6.4	6.4	9.9	6.3	6.1	5.6	6.1		min	5.4	3.5	5.1	5.8	5.7	0.9	5.8

6.3 6.7 6.8 6.9 0.4 6.7 7.1

6.4 6.6 6.7 7.1 6.9 6.9

Table 2.5 Dissolved Oxygen (mg/l) during 2018 at the Lower Cape Fear River Program stations.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	\mathbf{BBT}	IC	NCF6	
JAN	12.7	12.3		12.1	12.2	12.2	12.0	11.8	JAN	12.9	12.6	12.5	13.6	12.9	12.3	
FEB	10.5	6.6		9.1	10.2	10.4	10.3	10.2	FEB	11.5	11.4	11.5	11.3	11.5	10.0	
MAR	9.1	0.6		8.8	9.1	8.9	9.2	8.3	MAR	10.2	10.1	10.0	8.6	6.7	9.8	
APR	7.5	7.4		7.3	7.3	7.6	8.2	8.3	APR	9.2	8.9	8.3	7.9	8.4	9.9	
MAY	5.1	4.9		4.6	8.4	5.6	6.5	6.4	MAY	7.5	7.2	7.1	5.7	6.2	5.0	
JUN	4.4	3.5		3.7	4.7	4.5	5.2	5.5	NOI	5.9	5.5	5.2	3.7	4.4	2.8	
\mathbf{n}	3.8	4.3	5.2	4.5	4.5	5.5	6.1	6.1	JOL	6.1	5.8	5.9	5.4	5.3	4.2	
AUG	8.4	5.1		4.1	4.0	4.0	4.6	4.7	AUG	6.2	0.9	5.8	8.4	5.1	3.4	
SEP									SEP	5.4	4.9	4.2	3.5	3.6	3.6	
OCT	8.4	4.4		3.8	4.3	4.5	5.2	5.9	OCT	4.9	4.5	2.6	0.2	0.2	0.2	
NOV	7.5	7.5		7.2	7.8	8.2	8.2	7.4	NOV	8.8	8.8	9.8	8.3	8.0	8.9	
DEC	9.4	9.4		9.5	9.7	9.6	9.7	8.6	DEC	10.1	6.6	9.6	8.8	9.1	8.3	
mean	7.2	7.1		8.9	7.1	7.4	7.7	9.7	mean	8.2	8.0	9.7	6.9	7.0	0.9	
std dev	2.9	2.8		2.8	2.9	2.7	2.4	2.1	std dev	2.6	2.7	3.0	3.7	3.6	3.4	
median	7.5	7.4		7.2	7.3	7.6	8.2	7.4	median	8.2	8.0	7.7	8.9	7.1	5.8	
max	12.7	12.3	12.1	12.1	12.2	12.2	12.0	11.8	max	12.9	12.6	12.5	13.6	12.9	12.3	
min	3.8	3.5		3.7	4.0	4.0	4.6	4.7	mim	4.9	4.5	2.6	0.2	0.2	0.2	

	ANC	SAR	GS	NC403	PB	LRC	ROC	NCF117	SC-CH		B210	COL	SRWC	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM
JAN	10.0	12.8	13.8	11.7	12.2	13.6	12.3	9.0	10.6	JAN	10.8	8.6	10.5	10.3	10.4	10.8	10.9	12.1	11.5
FEB	0.6	10.1	10.7	6.6	9.5	11.4	7.6	8.6	9.3	FEB	8.7	7.1	8.4	8.9	9.8	7.7	9.8	10.3	10.2
MAR	11.0	10.8	11.9	11.7	11.4	12.2	11.1	8.4	8.6	MAR	9.6	9.1	6.6	10.0	10.1	9.4	10.4	9.1	9.5
APR	9.8	8.4	10.1	8.5	8.8	10.1	8.7	9.9	7.5	APR	6.5	6.3	7.6	7.6	7.4	6.3	5.1	8.0	7.7
MAY	7.0	6.5	7.7	6.4	3.9	8.8	7.5	4.9	5.2	MAY	5.7	6.3	6.9	7.8	7.7	6.9	2.3	7.9	6.4
NOL	4.9	5.9	5.4	4.6	4.4	7.4	6.4	3.0	3.5	NOI	4.7	5.1	5.9	9.9	8.9	5.7	4.6	7.2	6.5
IOL	3.4	7.1	1.7	3.1	9.9	8.8	4.6	3.2	3.5	JUL	4.4	5.2	4.7	6.4	5.6	5.6	5.4	7.2	5.9
AUG	4.1	4.9	2.0	2.6	4.7	6.7	5.1	3.3	4.0	AUG	4.1	4.6	5.6	5.0	5.4	4.8	3.7	6.9	6.1
SEP										SEP									
OCT	1.7	3.7	3.5	6.5	5.9	7.1	4.5	0.2	0.3	OCT	3.2	3.6	5.5	8.9	6.5	6.1	4.6	9.2	8.2
NOV	8.9	11.1	12.1	10.8	10.6	11.6	10.5	7.5	8.1	NOV	0.9	5.4	7.5	8.1	8.0	7.3	5.8	7.8	6.7
DEC	8.8	8.6	10.9	6.6	10.2	10.9	9.2	8.0	8.4	DEC	9.0	7.4	8.9	8.5	0.6	11.7	8.6	11.0	11.0
mean	7.0	8.3	8.2	7.8	8.0	6.6	8.1	5.8	6.4	mean	9.9	6.4	7.4	7.8	7.8	7.5	6.5	8.8	8.2
std dev	3.0	2.9	4.3	3.3	3.0	2.3	2.7	3.1	3.3	std dev	2.5	1.9	1.9	1.6	1.7	2.2	2.9	1.7	2.1
median	9.8	8.4	10.1	8.5	8.8	10.1	8.7	9.9	7.5	median	0.9	6.3	7.5	7.8	7.7	6.9	5.4	8.0	7.7
max	11.0	12.8	13.8	11.7	12.2	13.6	12.3	8.6	10.6	max	10.8	8.6	10.5	10.3	10.4	11.7	10.9	12.1	11.5
min	1.7	3.7	1.7	2.6	3.9	6.7	4.5	0.2	0.3	mim	3.2	3.6	4.7	5.0	5.4	8.4	2.3	6.9	5.9

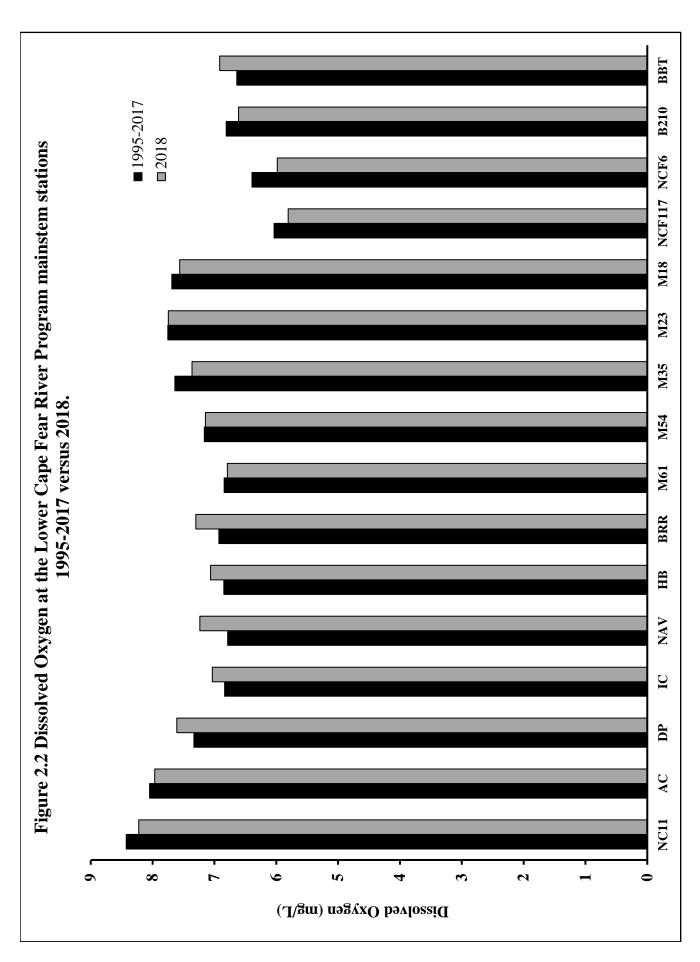


Table 2.6 Field Turbidity (NTU) during 2018 at the Lower Cape Fear River Program stations.

NCF6	12		9	9		ю	9			9					9	22	,
T IC	8	0 22			13	7	7		14	6			0 12		12	0 22	7
DP BBT	8 5	10 30	18 10	11 9	29 9	13 5	11 9	24 13	14 8	13 5	14	28 9	19 10	7 01	14 9	10 30	v o
AC 1	7	85	18			12				21	19		25	20	19	85	7
NC11	5	87	20	17	28	13	15	30	17	22	23	30		21	21	87	v
	\mathbf{JAN}	FEB	MAR	APR	MAY	JUN	\mathbf{n}	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	nim
ĺ	Ī											Ī	ī				
M18	3	17		9	5	33	2	4		4	10	6	9	5	5	17	c
M23	3	13		33	5	33	7	4		4	4	2	4	33	4	13	c
M35	5	10		4	∞	9	ж	∞		6	4	3	9	ж	9	10	ď
M54	4	21		5	6	7	ю	14		11	10	12	10	5	10	21	ĸ
M61	5	21		9	7	5	33	8		10	12	4	8	5	7	21	ĸ
BRR	5	21		11	7	7	9	13		13	17	7	11	5	6	21	v
HB	7	FEB 21 24		13	7	4	5	14		13	14	9	11	9	10	24	4
>	12	21		11	6	7	∞	22		15	17	7	13	9	12	22	7
NA												-	-		_		

	ANC	SAR	GS	NC403	PB	LRC	ROC	NCF117	SC-CH		B210	COL	SRWC	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM
JAN	10	3	1	2	5	13	7	18	11	\mathbf{JAN}	5	9	5	13	10	3	8	8	20
FEB	10	2	2	5	10	10	9	9	14	FEB	33	κ	2	7	κ	2	33	9	9
MAR	6	4	2	8	12	9	10	9	11	MAR	2	4	1	5	ж	2	5	∞	7
APR	6	33	2	4	12	9	6	3	7	APR	4	S	∞	22	13	4	23	13	22
MAY	13	S	2	4	6	4	9	5	6	MAY	5	7	33	5	4	4	18	9	7
NOL	10	8	κ	9	5	7	10	4	8	NOI	4	7	4	7	9	4	11	5	9
JUL	6	2	16	3	25	4	S	4	4	JUL	33	∞	7	2	2	8	10	4	9
AUG	7	4	ϵ	3	8	S	8	4	10	AUG	2	15	33	4	S	æ	5	4	S
SEP										SEP	_								
OCT	æ	4	4	3	5	5	S	3	5	OCT	2	2	2	7	κ	κ	33	9	4
NOV	9	2	1	2	9	4	С	3	7	NOV		2	0	8	1	1	-	4	33
DEC	4	0	0	0	4	1	0	0	7	DEC	1	0	0	1	0	0	0	4	3
mean	8	3	3	4	6	9	9	S	8	mean	3	જ	3	7	જ	3	8	9	8
std dev	33	2	4	2	9	3	3	5	3	std dev	_	4	3	9	4	1	7	33	7
median	6	3	7	3	∞	5	9	4	8	median	Э	S	33	5	33	3	5	9	9
max	13	8	16	∞	25	13	10	18	14	max	5	15	∞	22	13	4	23	13	22
mim	33	0	0	0	4	_	0	0	4	min		0	0	1	0	0	0	4	3

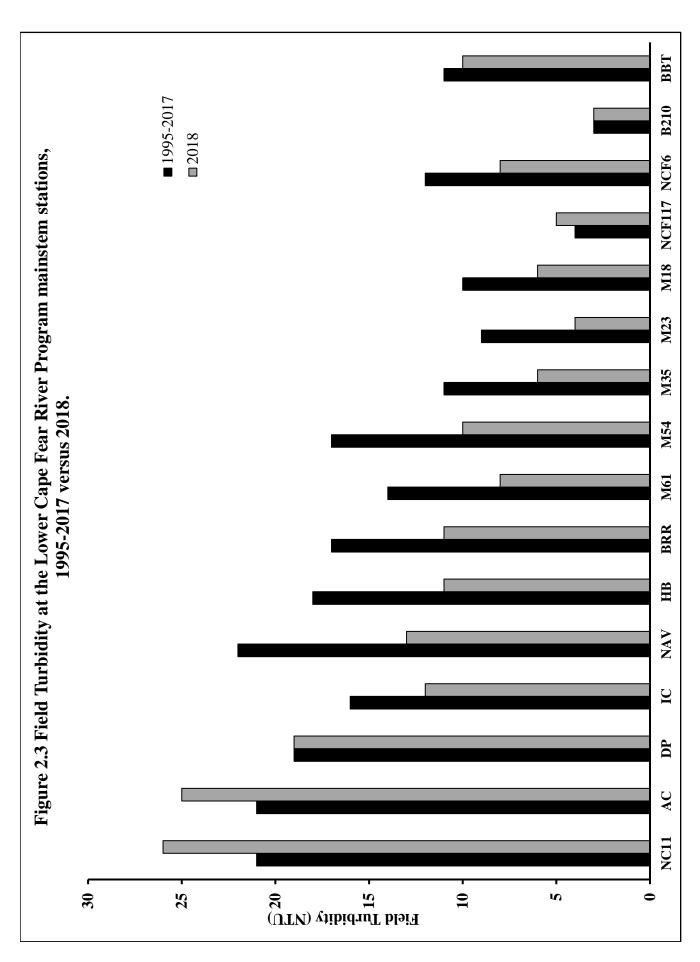


Table 2.7 Total Suspended Solids (mg/L) during 2018 at the Lower Cape Fear River Program stations.

NC11 AC DP IC	13.4 JAN 1.4 4.5 5.8 5.8	36.0 FEB 85.0 72.5 38.4 17.2	74.4 MAR 27.3 23.3 23.9 15.1	17.4 APR 13.0 8.7 5.6 6.5	12.7 MAY 29.9 30.5 29.9 5.8	7.9 JUN 9.0 8.6 10.7 3.9	9.0 JUL 16.6 16.0 14.3 10.5	9.4 AUG 53.2 36.4 46.2 28.6	SEP 13.5 8.8 10.9 9.7	8.0 OCT 23.6 27.4 13.3 13.0	24.9 NOV 27.0 21.0 14.8	39.2 DEC 28.4 28.7 25.0 15.0	22.9 mean 27.3 23.9 19.9 11.3	20.3 std dev 22.4 18.4 13.0 7.1	13.4 median 25.3 22.2 14.6 10.9	74.4 max 85.0 72.5 46.2 6.8
\geq				6	4.	9.9	0.3	7:		∞.	Τ.	.1	8.	9:	.1	9
M35	4 9.9															
M61 M54 M35	7.4	22.9	15.0	8.5	12.1	0.6	8.9	13.3		8.7	11.4	17.4	12.0	4.9	11.4	22.9
BRR M61 M54 M35	8.0 7.6 7.4	11.0 15.8 22.9	12.6 11.6 15.0	12.1 9.0 8.5	5.0 9.3 12.1	5.4 4.4 9.0	8.9 7.4 6.8	9.9 9.9 13.3		6.9 8.1 8.7	9.6 10.1 11.4	6.2 5.2 17.4	8.7 8.9 12.0	2.6 3.1 4.9	8.9 9.0 11.4	12.6 15.8 22.9
M61 M54 M35	9.7 8.0 7.6 7.4	11.4 11.0 15.8 22.9	7.2 12.6 11.6 15.0	11.6 12.1 9.0 8.5	5.4 5.0 9.3 12.1	4.3 5.4 4.4 9.0	4.1 8.9 7.4 6.8	9.1 9.9 9.9 13.3		8.6 6.9 8.1 8.7	8.6 9.6 10.1 11.4	5.4 6.2 5.2 17.4	7.8 8.7 8.9 12.0	2.7 2.6 3.1 4.9	8.6 8.9 9.0 11.4	11.6 12.6 15.8 22.9

	ANC	SAR	GS	NC403	PB	LRC	ROC	ROC NCF117 SC-CH	SC-CH		B210	COL	COL SRWC 6RC LCO GCO	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM
\mathbf{JAN}		1.4		3.0	9.9	9.9	5.1	7.7	9.3	JAN	1.8					1.4			
FEB		3.4		3.5	5.7	9.5	6.2	3.5	10.2	FEB	1.3					1.4			
MAR		1.4		5.1	6.7	1.4	5.6	3.1	12.7	MAR	1.4					1.5			
APR		3.4		4.3	5.2	3.8	13.0	4.2	11.7	APR	3.5					5.8			
MAY		5.9		6.1	5.9	1.4	7.8	5.4	13.0	MAY	4.2					3.7			
JUN		6.6		6.3	0.9	7.5	12.9	2.9	15.6	NOL	3.9					5.4			
JUL		1.3		5.8	10.8	1.3	19.0	7.0	7.2	JUL	1.3					1.3			
AUG		0.6		4.0	7.3	1.5	4.1	5.5	15.8	AUG	4.2					4.1			
SEP										SEP									
OCT		6.2		8.3	6.3	4.0	9.9	16.1	13.3	OCT	1.4					4.3			
NOV		1.3		1.3	2.9	1.3	1.3	1.4	5.6	NOV	1.3					1.3			
DEC		1.5		1.3	1.4	1.4	1.3	1.3	7.8	DEC	1.3					1.8			
mean		4.1		4.5	6.5	3.6	7.5	5.3	11.1	mean	2.3					2.9			
std dev		3.2		2.2	2.4	3.0	5.4	4.1	3.4	std dev						1.8			
median		3.4		4.3	0.9	1.5	6.2	4.2	11.7	median	1.4					1.8			
max		6.6		8.3	10.8	9.5	19.0	16.1	15.8	max	4.2					5.8			
min		1.3		1.3	1.4	1.3	1.3	1.3	5.6	mim	1.3					1.3			

Table 2.8 Light Attenuation (k) during 2018 at the Lower Cape Fear River Program stations.

	NAV	HB	BRR	M61	M24	M35	M123	MI8		NCII	AC	DF	BBI	IC	NCF6
\mathbf{JAN}									JAN						
FEB	3.55	4.54	4.37	3.62	4.01	2.20	2.19	2.44	FEB	7.10	6.42	4.52	3.64	3.05	4.22
MAR									MAR	3.23	3.45	3.08	2.95	2.68	4.16
APR	3.75	3.37	3.06	2.49	2.55	1.96	1.41	1.11	APR	2.83	2.67	2.90	2.79	2.91	3.46
MAY		3.01	2.75		3.65		2.25	1.96	MAY	4.02	4.23	3.63	3.74	3.58	3.90
JUN	4.06	4.09	3.20	3.95	3.96	3.54	2.53	2.74	NOT	2.60	2.99	3.31	4.20	3.30	3.86
nr		3.33	3.12	3.66	3.09	2.52	1.73	1.90	JUL	2.67	2.65	2.87			
AUG	4.56	4.02	3.48	2.71	4.62	3.72	3.31	3.24	AUG	4.78	4.75	4.36	3.78	4.47	4.58
SEP									SEP	1.00	1.13	1.44	1.02	1.33	1.03
OCT									OCT	1.72	1.76	0.74	0.75	1.54	1.31
NOV									NOV						
DEC									DEC						
mean	3.98	3.73	3.33	3.29	3.65	2.79	2.24	2.23	mean		3.34	2.98	2.86	2.86	3.32
std dev	0.44	0.58	0.56	0.64	0.73	0.80	99.0	0.74	std dev	7 1.80	1.61	1.24	1.30	1.03	1.36
max	4.56	4.54	4.37	3.95	4.62	3.72	3.31	3.24	max		6.42	4.52	4.20	4.47	4.58
mim	3.55	3.01	2.75	2.49	2.55	1.96	1.41	1.11	min		1.13	0.74	0.75	1.33	1.03

Table 2.9 Total Nitrogen (µg/l) during 2018 at the Lower Cape Fear River Program stations.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	IC	NCF6	
JAN	1,630	1,090	940	950	068	280	370	510	JAN		1,880	1,750	1,350	1,070	
FEB	1,630	1,920	1,620	1,550	1,600	1,020	089	850	FEB		2,190	1,880	1,730	1,200	
MAR	1,360	1,290	1,400	1,240	1,200	1,330	580	920	MAR		1,590	1,430	1,330	950	
APR	1,200	1,190	1,290	1,050	830	730	480	630	APR		1,480	1,620	1,330	1,110	
MAY	760	1,540	1,530	1,120	1,100	006	650	089	MAY		1,330	1,630	1,890	1,790	
NO	1,050	1,230	1,190	1,080	1,140	1,070	760	780	NOI		1,040	1,150	970	0.09	
JUL	890	740	440	350	420	210	50	50	Inf		1,640	1,480	1,480	840	
AUG	026	930	1,030	950	970	920	770	650	AUG	1,580	1,080	1,130	086	1,000	
SEP									SEP		1,980	1,460	1,530	1,320	
OCT	1,960	2,020	1,930	1,760	1,480	1,340	1,140	780	OCT		910	1,010	1,010	1,700	
NOV	1,610	1,390	1,480	1,400	1,330	1,350	1,280	1,260	NOV		1,640	1,640	1,670	1,470	
DEC	820	006	910	810	780	830	580	120	DEC		880	940	1,070	026	
mean	1,262	1,295	1,251	1,115	1,067	935	L99	657	mean	1,534	1,470	1,427	1,362	1,174	
std dev	401	405	409	380	338	350	337	344	std dev	367	430	304	311	340	
nedian	1,200	1,230	1,290	1,080	1,100	920	650	089	median	1,490	1,535	1,470	1,340	1,090	
max	1,960	2,020	1,930	1,760	1,600	1,350	1,280	1,260	max	2,330	2,190	1,880	1,890	1,790	
min	092	740	440	350	420	210	50	50	min	1,060	880	940	970	029	

HAM	2,030	1,260	840	1,350	006	870	1,560	1,430							1,260		
BRN	1,570	1,280	920	930	1,080	870	1,060	1,280		1,750	1,740	1,630	1,283	339	1,280	1,750	870
\mathbf{SR}	820	550	850	1,130	1,540	1,170	1,310	1,450		1,110	1,050	099	1,058	314	1,110	1,540	550
\mathbf{GCO}	1,030	850	820	1,220	1,580	1,040	1,300	860		1,480	1,360	1,420	1,178	272	1,220	1,580	820
Γ CO	1,630	1,320	1,280	1,090	096	850	096	1,410		1,350	1,400	1,840	1,281	300	1,320	1,840	850
6RC	2,150	1,550	1,370	2,040	2,030	1,640	096	1,400		2,310	1,790	2,560	1,800	470	1,790	2,560	096
SR-WC	1,140	480	290	720	950	830	006	1,590		1,560	1,250	950	966	361	950	1,590	480
\mathbf{cor}	1,040	820	1,000	800	1,100	1,100	1,940	2,140		2,020	1,900	750	1,328	548	1,100	2,140	750
B210	950	870	820	850	970	890	1,230	1,440		1,530	1,280	1,470	1,118	276	970	1,530	820
	JAN	FEB	MAR	APR	MAY	JUN	JOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min
ļ												I					
SC-CH	950	700	1,010	820	1,880	910	800	1,010		1,840	710	1,070	1,064	412	950	1,880	700
• 2															1,410 950		
NCF117 8	2,070 1,410 950	1,220	1,490	1,440	1,600	870	1,140	1,160		2,140 2,750	1,790 1,090	1,850 1,450	1,420	490		2,750	870
NCF117 8	2,070 1,410	2,050 1,220	1,170 1,490	1,630 1,440	1,600	1,280 870	6,480 1,140	2,890 1,160		2,140 2,750	1,790 1,090	1,850 1,450	2,260 1,420	1,476 490	1,410	6,480 2,750	1,170 870
NCF117 8	2,360 2,070 1,410	1,650 2,050 1,220	960 1,170 1,490	1,350 1,630 1,440	1,510 1,600	1,370 1,280 870	350 6,480 1,140	1,210 2,890 1,160		1,170 2,140 2,750	1,290 1,790 1,090	1,260 1,850 1,450	1,379 2,260 1,420	551 1,476 490	1,850 1,410	2,360 6,480 2,750	350 1,170 870
LRC ROC NCF117 8	2,020 2,360 2,070 1,410	4,100 1,650 2,050 1,220	1,680 960 1,170 1,490	2,270 1,350 1,630 1,440	2,200 1,510 1,600	960 1,370 1,280 870	800 350 6,480 1,140	2,490 1,210 2,890 1,160		2,110 1,170 2,140 2,750	4,820 1,290 1,790 1,090	5,430 1,260 1,850 1,450	2,549 1,379 2,260 1,420	1,555 551 1,476 490	1,290 1,850 1,410	5,430 2,360 6,480 2,750	800 350 1,170 870
PB LRC ROC NCF117 9	2,520 2,020 2,360 2,070 1,410	3,960 4,100 1,650 2,050 1,220	2,310 1,680 960 1,170 1,490	2,950 2,270 1,350 1,630 1,440	2,540 1,360 2,200 1,510 1,600	1,600 960 1,370 1,280 870	1,270 800 350 6,480 1,140	1,280 2,490 1,210 2,890 1,160		2,110 1,170 2,140 2,750	4,540 4,820 1,290 1,790 1,090	4,900 5,430 1,260 1,850 1,450	2,804 2,549 1,379 2,260 1,420	1,237 1,555 551 1,476 490	2,110 1,290 1,850 1,410	4,900 5,430 2,360 6,480 2,750	1,270 800 350 1,170 870
NC403 PB LRC ROC NCF117 S	670 2,520 2,020 2,360 2,070 1,410	1,940 3,960 4,100 1,650 2,050 1,220	680 2,310 1,680 960 1,170 1,490	930 2,950 2,270 1,350 1,630 1,440	2,540 1,360 2,200 1,510 1,600	630 1,600 960 1,370 1,280 870	1,300 1,270 800 350 6,480 1,140	1,100 1,280 2,490 1,210 2,890 1,160		2,970 2,110 1,170 2,140 2,750	960 4,540 4,820 1,290 1,790 1,090	950 4,900 5,430 1,260 1,850 1,450	1,066 2,804 2,549 1,379 2,260 1,420	413 1,237 1,555 551 1,476 490	2,540 2,110 1,290 1,850 1,410	1,940 4,900 5,430 2,360 6,480 2,750	630 1,270 800 350 1,170 870

JAN
FEB
MAAR
APR
JUN
JUL
AUG
SEP
OCT
NOV
DEC
mean
std dev
median
max

Table 2.10 Nitrate/Nitrite (µg/l) during 2018 at the Lower Cape Fear River stations.

	NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	IC	NCF6
\mathbf{JAN}	630	490	440	350	390	280	170	110	\mathbf{JAN}	1,170		850	059	270
FEB	630	620	620	550	200	420	180	50	FEB	930		086	930	400
MAR	099	590	009	540	200	330	80	20	MAR	700		730	630	250
APR	200	490	490	350	330	230	180	130	APR	710		520	530	210
MAY	092	640	630	320	400	300	250	180	MAY	570		530	490	390
NOL	450	330	490	380	440	370	260	180	NOI	099		650	470	270
JUL	069	640	440	350	320	210	06	50	JOL	870		880	860	140
AUG	370	430	430	250	270	220	170	150	AUG	480		430	380	200
SEP	_								SEP	1,060		092	530	220
OCT	092	720	630	260	280	440	240	180	OCT	410		310	110	10
NOV	610	490	580	200	430	350	280	09	NOV	069		740	029	470
DEC	420	400	410	410	380	330	380	120	DEC	260	580	540	570	570
mean	685	531	524	415	413	316	207	112	mean	734		099	895	283
std dev	135	120	68	106	06	77	87	59	std dev	231		199	213	152
median	630	490	490	380	400	330	180	120	median	969		069	550	260
max	092	720	630	260	280	440	380	180	max	1,170		086	930	570
min	370	330	410	250	270	210	80	20	mim	410		310	110	10

	ANC	SAR	\mathbf{GS}	NC403 PB	PB	LRC	ROC	NCF117 8	SC-CH		B210	COL	SR-WC	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM
JAN	1,200	006		1,820	1,320	1,260	1,170	510	250	JAN	250	40	440	1,050	730	330	120	170	930
FEB	280	520		3,160	3,200	1,050	1,050	520	300	FEB	370	20	80	850	720	250	50	089	260
MAR	240	530		1,510	880	260	370	290	210	MAR	220	10	06	029	480	220	50	320	240
APR	630	330		1,650	970	250	430	240	120	APR	250	10	220	1,140	490	520	230	230	550
MAY	120	330		1,340	160	200	610	300	380	MAY	270	10	250	1,130	360	089	340	480	200
JUN	220	069		1,000	360	670	580	270	210	NOL	290	10	230	1,040	350	340	370	370	370
IOL	130	210	10	270	10	350	2,280	240	200	JUL	230	40	400	460	260	200	110	460	160
AUG	06	140		380	066	410	1,690	160	110	AUG	140	40	06	300	210	09	50	480	230
SEP										SEP									
OCT	30	220		1,670	1,010	170	540	50	40	OCT	330	20	460	1,210	450	480	110	950	310
NOV	220	850		3,740	3,920	069	1,090	290	210	NOV	380	10	250	590	400	360	50	840	170
DEC	230	570	350	3,900	4,430	260	950	450	370	DEC	870	50	350	1,860	1,340	920	160	830	1,120
mean	80ε	481	195	1,858	1,568	561	826	302	218	mean	327	24	260	936	276	424	149	583	440
std dev	334	259	309	1,238	1,543	342	584	143	105	std dev	193	16	139	431	316	235	116	241	323
median	220	520	40	1,650	066	200	950	290	210	median	270	20	250	1,040	450	360	110	480	310
max	1,200	006	1,040	3,900	4,430	1,260	2,280	520	380	max	870	50	460	1,860	1,340	920	370	950	1,120
min	30	140	10	270	10	170	370	50	40	mim	140	10	80	300	210	09	50	230	160

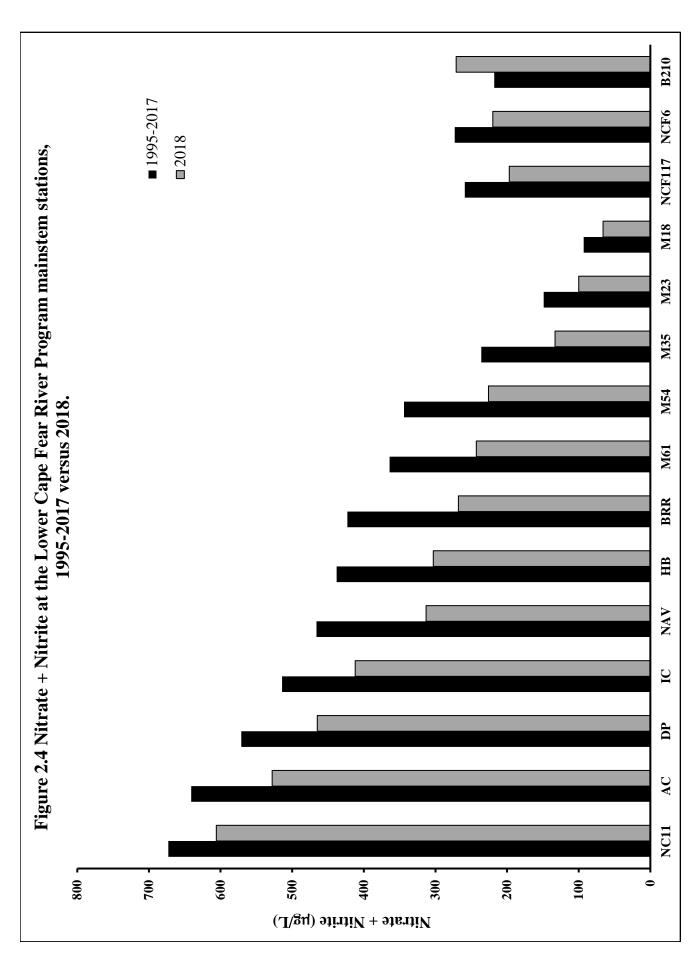


Table 2.11 Ammonia (μg/l) during 2018 at the Lower Cape Fear River stations.

																		\mathbf{SR}	10	10	40	240	620	90	320	90		100	50	10	144	187	90	620	10
																		029	10	20	40	09	100	100	70	80		06	09	10	85	34	09	100	10
																		Γ CO	10	20	50	50	80	40	50	06		110	70	10	23	33	50	110	10
NCF6	80	50	80	30	80	100	100	120	50	170	100	30	83	40	80	170	30	6RC	70	09	09	170	100	09	30	06		110	70	130	98	39	70	170	30
IC	110	50	110	100	70	130	110	100	100	50	06	20	87	32	100	130	20	SR-WC	20	10	50	10	70	40	70	06		150	70	30	22	41	50	150	10
DP	150	50	100	110	100	190	160	80	140	70	90	09	108	43	100	190	50	COL	20	40	70	40	400	280	340	170		570	240	06	205	178	170	570	20
AC	160	70	110	110	110	120	160	110	280	40	80	50	117	64	110	280	40	B210	30	10	40	20	180	09	80	130		170	80	30	75	09	09	180	10
NC11	80	50	06	110	06	110	150	140	80	50	06	06	94	30	06	150	50		JAN	FEB	MAR	APR	MAY	NO	\mathbf{n}	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	min
	JAN	FEB	MAR	APR	MAY	NOI	JOL	AUG	SEP	0CT	NOV	DEC	mean	std dev	median	max	min		•											•	•				
															_			_	ı																
																		SC-CH	110	130	50	09	160	110	130	100		380	30	130	126	93	110	380	30
M18	50	10	10	10	06	80	10	06		200	170	120	92	29	80	200	10	NCF117 SC-CH					120 160											580 380	
M23 M18		10 10								190 200								ROC NCF117 SC-CE	80	40	50	80		170	80	580		320	30	100	150	164	80		30
	08		10	09	110	100	10	150			10	10	29	64	09	190	10	NCF117	270 80	320 40	120 50	120 80	120	70 170	10 80	110 580		380 320	30 30	240 100	169 150	121 164	120 80	580	10 30
M23	160 80	10	40 10	09 08	130 110	120 100	30 10	140 150		190	60 10	60 10	104 67	55 64	110 60	210 190	30 10	ROC NCF117	90 270 80	80 320 40	70 120 50	100 120 80	190 120	390 70 170	60 10 80	60 110 580		200 380 320	50 30 30	240 240 100	149 169 150	116 121 164	90 120 80	380 580	50 10 30
M35 M23	200 160 80	200 110 10	100 40 10	09 08	110 130 110	210 120 100	70 30 10	200 140 150		200 210 190	120 60 10	60 10	147 104 67	54 55 64	120 110 60	210 210 190	70 30 10	LRC ROC NCF117	160 90 270 80	130 80 320 40	60 70 120 50	210 100 120 80	300 190 120	290 390 70 170	70 60 10 80	80 60 110 580		180 200 380 320	50 50 30 30	140 240 240 100	237 149 169 150	340 116 121 164	140 90 120 80	390 380 580	50 50 10 30
M54 M35 M23	170 200 160 80	200 110 10	70 100 40 10	09 08 06 06	90 110 130 110	90 210 120 100	60 70 30 10	170 200 140 150		200 210 190	110 120 60 10	90 120 60 10	116 147 104 67	52 54 55 64	90 120 110 60	230 210 210 190	60 70 30 10	PB LRC ROC NCF117	90 160 90 270 80	70 130 80 320 40	70 60 70 120 50	140 210 100 120 80	1,240 300 190 120	110 290 390 70 170	200 70 60 10 80	100 80 60 110 580		170 180 200 380 320	120 50 50 30 30	130 140 240 240 100	121 237 149 169 150	40 340 116 121 164	120 140 90 120 80	1,240 390 380 580	70 50 50 10 30
M61 M54 M35 M23	170 170 200 160 80	110 200 110 10	60 70 100 40 10	09 08 06 06 06	130 90 110 130 110	70 90 210 120 100	10 60 70 30 10	150 170 200 140 150		230 200 210 190	130 110 120 60 10	150 90 120 60 10	114 116 147 104 67	52 54 55 64	130 90 120 110 60	170 230 210 210 190	10 60 70 30 10	NC403 PB LRC ROC NCF117	40 90 160 90 270 80	10 70 130 80 320 40	10 70 60 70 120 50	20 140 210 100 120 80	130 1,240 300 190 120	40 110 290 390 70 170	50 200 70 60 10 80	50 100 80 60 110 580		310 170 180 200 380 320	10 120 50 50 30 30	30 130 140 240 240 100	55 121 237 149 169 150	86 40 340 116 121 164	40 120 140 90 120 80	200 1,240 390 380 580	10 70 50 50 10 30
BRR M61 M54 M35 M23	150 170 170 200 160 80	130 110 200 110 10	60 60 70 100 40 10	100 90 90 90 80 60	150 130 90 110 130 110	80 70 90 210 120 100	70 10 60 70 30 10	80 150 170 200 140 150		160 230 200 210 190	90 130 110 120 60 10	60 150 90 120 60 10	98 114 116 147 104 67	50 52 54 55 64	90 130 90 120 110 60	150 170 230 210 210 190	60 10 60 70 30 10	GS NC403 PB LRC ROC NCF117	60 40 90 160 90 270 80	10 70 130 80 320 40	30 10 70 60 70 120 50	30 20 140 210 100 120 80	40 130 1,240 300 190 120	60 40 110 290 390 70 170	70 50 200 70 60 10 80	80 50 100 80 60 110 580		260 310 170 180 200 380 320	10 10 120 50 50 30 30	100 30 130 140 240 240 100	73 55 121 237 149 169 150	68 86 40 340 116 121 164	60 40 120 140 90 120 80	310 200 1,240 390 380 580	10 10 70 50 50 10 30

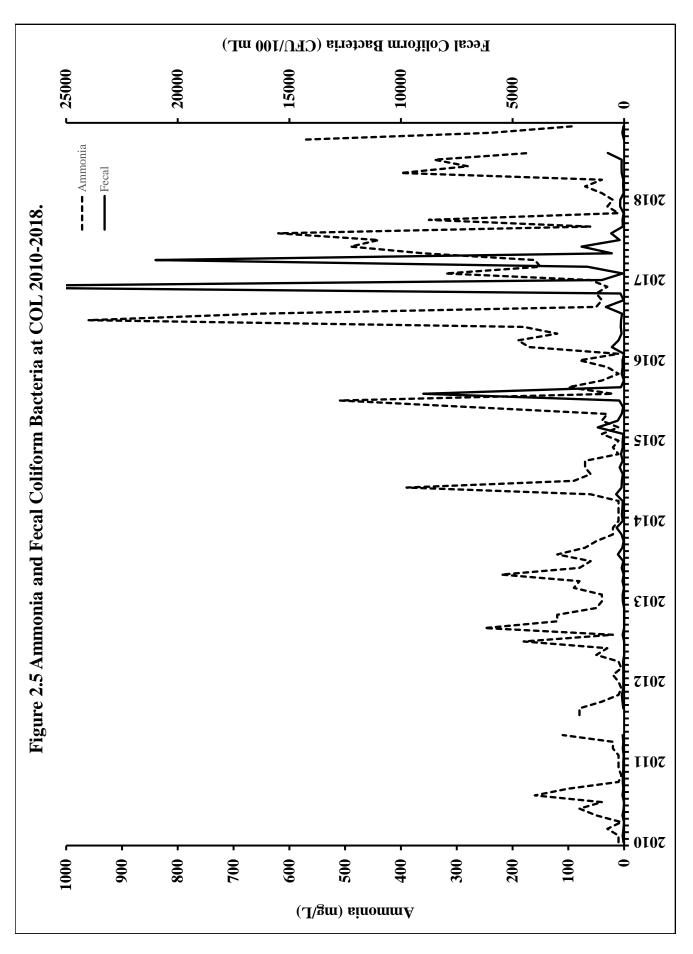


Table 2.12 Total Kjeldahl Nitrogen (μg/l) during 2018 at the Lower Cape Fear River Program stations.

	INT. V	ПD	DKK	MOI	M54	CCIVI	M123	MIIS		NCII	AC	DF	IC	NCF0
ΑN	1,000	009	500	009	200	300	200	400	$_{ m JAN}$	002	006	006	200	800
EB	1,000	1,300	1,000	1,000	1,100	009	500	800	FEB	1,400	1,100	006	800	800
AR	700	700	800	700	700	1,000	500	006	MAR	1,000	006	700	700	700
PR	700	700	800	700	500	500	300	500	APR	800	800	1,100	800	006
MAY	50	006	006	800	700	009	400	500	MAY	800	800	1,100	1,400	1,400
Z	009	006	700	700	700	700	500	009	NOI	500	400	200	500	400
ď	200	100	50	20	100	20	50	50	JUL	009	009	009	009	700
UG	009	500	009	700	700	700	009	500	AUG	1,100	009	700	009	800
EP									SEP	800	1,100	700	1,000	1,100
CI	1,200	1,300	1,300	1,200	006	006	006	009	OCT	700	200	700	006	1,700
ΛC	1,000	006	006	006	006	1,000	1,000	1,200	NOV	700	006	006	1,000	1,000
\mathbf{EC}	400	200	200	400	400	200	200	50	DEC	200	300	400	500	400
mean	<i>LL</i> 9	764	732	705	929	623	468	555	mean	008	742	<i>191</i>	792	892
dev	360	353	324	302	273	289	290	338	std dev	259	261	219	257	375
nedian	700	700	800	700	700	009	500	500	median	750	800	700	750	800
ax	1,200	1,300	1,300	1,200	1,100	1,000	1,000	1,200	max	1,400	1,100	1,100	1,400	1,700
min	50	100	20	20	100	20	50	50	mim	200	300	400	200	400

	ANC	SAR	\mathbf{GS}	NC403	PB	LRC	ROC	NCF117	SC-CH		B210	col	SR-WC	6RC	Γ CO	$_{\rm GCO}$	\mathbf{SR}	BRN	HAM
\mathbf{JAN}			200	700	200	1,100	006	006	700	\mathbf{JAN}	002	1,000	200	1,100	006	200	200	800	1,100
FEB			006	800	006		1,000	700	400	FEB	200	800	400	700	009	009	500	009	700
MAR			009	800	800		800	1,200	800	MAR	009	1,000	200	700	800	009	800	009	009
APR			006	1,300	1,300		1,200	1,200	700	APR	009	800	200	006	009	200	006	700	800
MAY			006	1,200	1,200		006	1,300	1,500	MAY	200	1,100	700	006	009	006	1,200	009	700
NOL			009	009	009		700	009	700	NOL	009	1,100	009	009	500	200	800	200	200
\mathbf{J}			1,300	1,000	800		4,200	006	009	JUL	1,000	1,900	200	200	700	800	1,200	009	1,400
AUG			1,100	006	1,500		1,200	1,000	006	AUG	1,300	2,100	1,500	1,100	1,200	800	1,400	800	1,200
SEP										SEP									
OCT			1,600	1,300	1,100	1,000	1,600	2,700	1,800	OCT	1,200	2,000	1,100	1,100	006	1,000	1,000	800	009
NOV			009	800	006	009	700	800	200	NOV	006	1,900	1,000	1,200	1,000	1,000	1,000	006	800
DEC			009	1,000	1,000	700	006	1,000	700	DEC	009	700	009	700	200	500	500	800	700
mean	1,464	836	873	945	982	823	1,282	1,118	845	mean	162	1,309	736	864	755	755	606	200	827
std dev			347	238	271	412	1,003	267	425	std dev	270	545	332	238	225	163	288	126	283
median			006	006	006	700	006	1,000	700	median	200	1,100	009	006	700	200	006	700	700
max			1,600	1,300	1,500	1,700	4,200	2,700	1,800	max	1,300	2,100	1,500	1,200	1,200	1,000	1,400	006	1,400
min	_		200	009	009	50	700	009	400	min	200	200	400	200	200	200	200	200	500

Table 2.13 Total Phosphorus (μg/l) during 2018 at the Lower Cape Fear River Program stations.

JAN 140 120 90 80 60 50 30 40 JAN 130 70 210 190 230 FEB 60 90 80 60 40 40 40 40 40 40 40 60 40 40 40 40 40 40 40 40 40 80 APR 230 220 220 220 220 120 100 100 100 100 100 200 40 40 40 80 APR 100 120		NAV	HB	BRR	M61	M54	M35	M23	M18		NC11	AC	DP	IC	NCF6
60 90 80 40 40 40 FEB 210 210 160 160 280 260 180 320 170 170 180 180 APR 100 170 170 180 180 APR 100 180	\mathbf{JAN}	140	120	06	80	09	50	30	40	JAN	130	70	210	190	230
280 260 180 320 170 270 180 180 APR 230 220 220 190 100 120 130 50 40 40 80 APR 100 120	FEB	09	06	80	100	06	09	40	40	FEB	210	210	160	160	70
100 120 130 50 40 40 80 APR 100 120 80 120 130 100 90 90 80 70 30 30 MAY 140 180 170 200 100 140 270 270 160 120 110 80 90 101 200 150	MAR	280	260	180	320	170	270	190	180	MAR	230	220	220	190	140
130 100 90 90 80 70 30 30 MAY 140 180 170 200 100 140 270 270 160 120 110 80 JUL 330 170	APR	100	120	130	50	40	40	40	80	APR	100	120	80	120	70
100 140 270 270 160 120 110 80 JUL 30 150 150 150 150 150 150 150 150 150 150 150 170	MAY	130	100	8	06	80	70	30	30	MAY	140	180	170	200	210
210 150 130 130 110 270 90 90 JUL 230 220 270 170 210 160 230 250 330 180 180 210 AUG 170 170 200 130 190 230 250 160 90 90 70 OCT 150 150 170	JUN	100	140	270	270	160	120	110	80	NOL	140	130	160	150	130
210 160 230 250 330 180 180 210 AUG 170 170 220 130 190 230 220 250 160 80 70 70 NOY 80 170 170 130 120 140 180 80 100 80 70 110 DEC 140 110 90 80 150 143 148 163 124 117 88 92 mean 161 163 169 80 150 143 148 163 124 117 88 92 mean 161 163 169 80 150 143 143 143 143 143 163 163 152 150 150 150 150 150 150 160 160 160 160 160 160 160 160 160 160 160 160	JUL	210	150	130	130	110	270	06	06	JUL	230	220	270	170	150
190 230 200 250 160 80 70 70 DCT 150 150 160 80 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 80 70 80	AUG	210	160	230	250	330	180	180	210	AUG	170	170	220	130	130
190 230 200 250 160 90 90 70 70 OCT 150 150 150 200 220 130 120 140 180 80 100 80 100 80 110 90 80 150 143 148 163 124 117 88 92 mean 161 163 169 155 150 130 130 130 80 80 80 80 80 163 155 157 143 180 120 130 130 80 80 80 80 80 165 165 165 165 280 250 270 130 270 190 210 max 230 260 270 220 60 80 80 80 30 30 40 80 80 80 80 80 80 80 80	SEP									SEP	210	260	160	170	250
130 120 140 180 80 100 80 NOV 80 110 90 80 150 150 143 148 163 124 117 88 92 mean 161 163 169 80 62 54 61 91 77 81 53 54 std dev 48 55 57 43 130 130 130 80 80 80 80 80 80 80 165	OCT	190	230	200	250	160	06	06	70	OCT	150	150	200	220	390
150 80 90 70 80 70 110 BEC 140 110 90 80 150 143 148 163 124 117 88 92 mean 161 163 169 155 62 54 61 91 77 81 53 54 std dev 48 55 57 43 130 130 90 80 80 80 80 165 165 165 165 280 250 270 190 210 max 230 260 270 220 60 80 80 80 30 min 80 70 80 80	NOV	130	120	140	180	80	80	100	80	NOV	80	110	90	80	100
150 143 148 163 124 117 88 92 mean 161 163 169 155 62 54 61 91 77 81 53 54 std dev 48 55 57 43 130 120 130 90 80 80 80 165 165 165 165 165 280 270 320 370 190 210 max 230 260 270 220 60 80 80 50 40 40 30 30 min 80 70 80 80	DEC	100	80	06	70	80	09	70	110	DEC	140	110	06	80	80
62 54 61 91 77 81 53 54 std dev 48 55 57 43 130 120 130 90 80 90 80 median 145 160 165 165 280 260 270 330 270 190 210 max 230 260 270 220 60 80 80 50 40 40 30 30 min 80 70 80 80	mean	150	143	148	163	124	117	88	92	mean	161	163	169	155	155
130 120 130 130 130 80 80 80 median 145 160 165 165 280 260 270 330 270 190 210 max 230 260 270 220 60 80 80 50 40 40 30 30 min 80 70 80 80	std dev	62	54	19	91	77	81	53	54	std dev	48	55	57	43	06
280 260 270 320 330 270 190 210 max 230 260 270 220 60 80 80 50 40 40 30 30 min 80 70 80 80	median	130	120	130	130	06	80	06	80	median	145	160	165	165	135
60 80 80 50 40 40 30 30 min 80 70 80 80	max	280	260	270	320	330	270	190	210	max	230	260	270	220	220
	min	09	80	80	50	40	40	30	30	mim	80	70	80	80	80

	ANC	SAR	GS	NC403	PB	LRC	ROC	NCF117	SC-CH		B210	COL	SR-WC	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM
\mathbf{JAN}	390	20	40	70	140	06	100	160	20	JAN	20	20	10	140	50	100	40	20	70
FEB	200	09	40	80	06	09	40	09	70	FEB	30	40	10	06	30	110	30	30	80
MAR	06	09	40	120	100	80	50	70	50	MAR	50	70	10	50	10	150	10	40	80
APR	280	170	9	150	190	160	150	09	30	APR	110	70	09	240	120	370	100	130	170
MAY	120	170	170	210	230	130	210	140	140	MAY	120	110	09	210	06	530	08	110	260
NO	400	180	160	250	240	150	220	240	190	NOL	150	140	40	160	06	390	8	100	140
IUL	270	300	310	220	240	10	1,390	120	70	JUL	170	240	80	170	160	009	120	80	360
AUG	240	200	220	190	380	110	460	200	120	AUG	180	160	80	180	06	290	100	100	160
SEP										SEP									
OCT	380	350	380	250	370	170	430	430	360	OCT	160	230	80	180	06	280	06	100	180
NOV	140	40	99	110	160	09	160	70	80	NOV	80	180	10	110	10	210	10	99	110
DEC	120	390	140	170	220	110	150	100	210	DEC	80	140	09	06	50	20	20	70	20
mean	539	181	147	165	215	103	305	150	126	mean	107	132	45	147	72	277	63	62	148
std dev	110	116	1111	62	91	47	367	105	92	std dev	50	64	29	55	44	175	39	30	92
median	240	170	140	170	220	110	160	120	80	median	110	140	09	160	06	280	80	80	140
max	400	390	380	250	380	170	1,390	430	360	max	180	240	80	240	160	009	120	130	360
min	06	40	40	70	06	10	40	09	30	mim	30	40	10	50	10	20	10	30	20

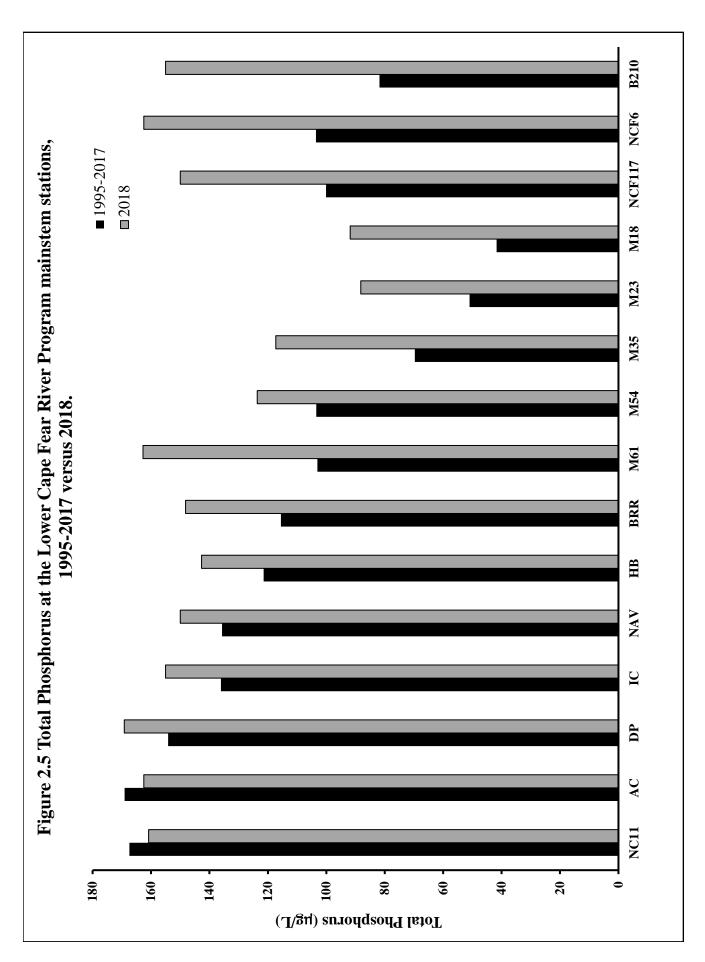


Table 2.14 Orthophosphate (µg/l) during 2018 at the Lower Cape Fear River Program stations.

																		HAM	10	40	20	30	40	40	40	50	1	20	20	20	33	13	40	50	10
																		BRN	10	30	10	10	20	30	10	10	;	10	10	20	15	∞	10	30	10
																		\mathbf{SR}	2	S	5	5	10	5	5	2	;	10	10	5	9	7	5	10	S
																		$_{\rm GCO}$	20	150	50	170	230	150	300	140	,	130	80	20	134	83	140	300	20
NCF6	10	80	20	20	20	80	30	50	50	06	30	30	45	26	40	06	10	Γ CO	10	20	5	20	20	20	30	20	;	30	20	10	19	∞	20	30	S
IC	20	40	09	40	30	40	80	40	50	40	30	20	43	16	40	80	20	6RC	20	40	20	30	40	40	09	09	i	70	30	30	43	16	40	70	20
\mathbf{BBT}	20	40	50	20	30	40	80	50	50	70	30	20	42	19	40	80	20	SR-WC	5	10	20	5	10	10	20	10		40	10	10	14	10	10	40	S
DP	08	50	50	30	30	20	100	40	09	20	30	30	48	23	45	100	20	col	30	70	20	50	70	70	06	40		170	70	50	99	40	70	170	20
AC	100	40	40	30	30	40	06	40	110	30	30	40	52	30	40	110	30	B210	20	20	10	30	40	50	50	09	i	70	20	20	38	19	40	70	10
NC11	110	50	30	40	30	50	70	30	70	30	20	30	47	56	35	110	20		JAN	FEB	MAR	APR	MAY	NOI	JUL	\mathbf{AUG}	SEP	OCL	NOV	DEC	mean	std dev	median	max	min
														>	n			•																	
	JAN	FEB	MAR	APR	MAY	NOI	IOL	AUG	SEP	\mathbf{OCT}	NOV	DEC	mean	std dev	media	max	min																		
	JAN	FEB	MAR	APR	MAY	NOI	IOL	AUG	SEP	OCT	NOV	DEC	mean	std de	media	max	mim	SC-CH	10	09	5	10	50	09	20	10	,	09	20	50	32	23	20	09	ν
M18	1				10 MAY				SEP		10 NOV		15 mean					NCF117 SC-CH				20 10			40 20									09 02	
M23 M18	10	20	10		10	20	10	30		30	10	10		∞	10	30	10		70	09	20	20		09	40	09	,	09	20	20	43	20	40		20
	10 10	30 20	10 10	10	20 10	30 20	20 10	30 30		40 30	20 10	20 10	15	10 8	20 10	40 30	10 10	NCF117	20 70	40 60	10 20	40 20	40	40 60	480 40	150 60	;	180 60	50 20	80 20	103 43	136 20	40 40	70	10 20
M23	20 10 10	40 30 20	20 10 10	10 10	20 20 10	40 30 20	30 20 10	30 30 30		50 40 30	20 20 10	20 20 10	22 15	11 10 8	20 20 10	50 40 30	20 10 10	ROC NCF117	10 20 70	50 40 60	10 10 20	10 40 20	10 40 40	50 40 60	20 480 40	20 150 60	;	40 180 60	10 50 20	30 80 20	24 103 43	16 136 20	20 40 40	480 70	10 10 20
M35 M23	30 20 10 10	50 40 30 20	30 20 10 10	20 10 10	40 20 20 10	50 40 30 20	40 30 20 10	50 30 30 30		60 50 40 30	20 20 20 10	30 20 20 10	28 22 15	13 11 10 8	40 20 20 10	60 50 40 30	20 20 10 10	LRC ROC NCF117	20 10 20 70	70 50 40 60	20 10 10 20	30 10 40 20	10 40 40	70 50 40 60	5 20 480 40	20 20 150 60	:	120 40 180 60	20 10 50 20	70 30 80 20	42 24 103 43	35 16 136 20	20 20 40 40	50 480 70	5 10 10 20
M54 M35 M23	30 30 20 10 10	60 50 40 30 20	40 30 20 10 10	20 20 10 10	20 40 20 20 10	60 50 40 30 20	40 40 30 20 10	50 50 30 30 30		70 60 50 40 30	20 20 20 20 10	30 30 20 20 10	38 28 22 15	17 13 11 10 8	40 40 20 20 10	70 60 50 40 30	20 20 20 10 10	PB LRC ROC NCF117	10 20 10 20 70	20 70 50 40 60	20 20 10 10 20	30 30 10 40 20	20 10 40 40	20 70 50 40 60	20 5 20 480 40	40 20 20 150 60		60 120 40 180 60	20 20 10 50 20	30 70 30 80 20	27 42 24 103 43	13 35 16 136 20	20 20 20 40 40	120 50 480 70	10 5 10 10 20
M61 M54 M35 M23	30 30 30 20 10 10	40 60 50 40 30 20	20 40 30 20 10 10	30 20 20 10 10	40 20 40 20 20 10	40 60 50 40 30 20	40 40 40 30 20 10	40 50 50 30 30 30		70 70 60 50 40 30	30 20 20 20 20 10	20 30 30 20 20 10	41 38 28 22 15	14 17 13 11 10 8	40 40 40 20 20 10	70 70 60 50 40 30	20 20 20 20 10 10	NC403 PB LRC ROC NCF117	5 10 20 10 20 70	20 20 70 50 40 60	10 20 20 10 10 20	10 30 30 10 40 20	30 20 10 40 40	20 20 70 50 40 60	10 20 5 20 480 40	40 40 20 20 150 60		60 60 120 40 180 60	10 20 20 10 50 20	20 30 70 30 80 20	21 27 42 24 103 43	16 13 35 16 136 20	20 20 20 40 40	60 120 50 480 70	5 10 5 10 10 20
BRR M61 M54 M35 M23	30 30 30 30 20 10 10	60 40 60 50 40 30 20	30 20 40 30 20 10 10	30 30 20 20 10 10	30 40 20 40 20 20 10	60 40 60 50 40 30 20	60 40 40 40 30 20 10	30 40 50 50 30 30 30		70 70 70 60 50 40 30	30 30 20 20 20 20 10	30 20 30 30 20 20 10	36 41 38 28 22 15	16 14 17 13 11 10 8	30 40 40 40 20 20 10	70 70 70 60 50 40 30	30 20 20 20 20 10 10	GS NC403 PB LRC ROC NCF117	10 5 10 20 10 20 70	40 20 20 70 50 40 60	10 10 20 20 10 10 20	10 10 30 30 10 40 20	30 30 30 20 10 40 40	40 20 20 70 50 40 60	30 10 20 5 20 480 40	50 40 40 20 20 150 60		80 60 60 120 40 180 60	10 10 20 20 10 50 20	20 20 30 70 30 80 20	30 21 27 42 24 103 43	22 16 13 35 16 136 20	30 20 20 20 40 40	60 60 120 50 480 70	10 5 10 5 10 10 20

Table 2.15 Chlorophyll $a~(\mu g/l)$ during 2018 at the Lower Cape Fear River Program stations.

BBT IC NCF6	1 0	3 2 1	1 3 1	2 1	1 1	1 0	2 0	1 0	1 7	1 7 13	1 2	1 1	2 2	3 2 4	1 1	1 7 13	0
DP BI	0 1	3	4	2	2	1 1	3	1 1	1 1	1 1	1 1	2	2 2	1	2	4	0
NC11 AC	0 1	5 6	6 3	2 2	2 1	1 1	2 2		2 3			2 2	2 2	2 1	2 2	9 9	0
	JAN	FEB	MAR	APR	MAY	NOI	IOL	AUG	SEP	OCT	NOV	DEC	mean	std dev	median	max	mim
M18	2	5	13	8	5	5	12	1		8	4	9	ß	4	5	13	_
M23	2	7	10	33	9	4	11	-		2	2	_	4	4	33	11	_
M35	1	2	S	2	5	9	6	_		_	3	-	3	33	2	6	-
M54	1	2	4	1	2	4	4	-		2	3	2	2	-	2	4	_
M61	П	2	2	1	1	1	11	1		2	2	1	2	33	1	11	-
		33	3	1	2	4	21	1		2	2	2	4	9	2	21	-
BRR				_	3	1	7	1		ε	2	ω	2	7	7	7	_
NAV HB BRR	1		2														

	ANC	SAR	CS	NC403	PB	LRC	ROC	NCF117	SC-CH		B210	COL	SR-WC	6RC	Γ CO	GCO	SR	BRN	HAM
JAN	1	2	3	11	28	2	2	1	0	JAN	3	2	2	4	1	2	11	2	4
FEB		18	9	7	6	1	12	_	2	FEB	2	3	2	3	2	3	16	2	5
MAR		1	1	33	12	2	1	0	1	MAR	1	2	2	1	1	-	6	0	3
APR	4	2	ж	5	11	5	κ	_	12	APR	1	33	2	9	1	2	14	2	ϵ
MAY	4	1	2	13	2	2	1	_	2	MAY	1	2	0	0	0	-	18	1	2
NO	ϵ	1	2	11	5	4	1	_	1	NUL	0	2	_	1	1	2	16	1	_
JUL	4	4	13	17	22	2	38	_	13	IUL	1	3		1	1	2	43	2	5
AUG	25	1	3	6	13	2	0	0	9	AUG	0	2	-	1	-	-	4	-	-
SEP										SEP									
OCT	4	-	20	39	18	7	7	17	24	OCT	0	0	0	1	-	2	4	9	0
NOV	-	_	1	3	-	2	0	1	S	NOV	0	_	0	1	0	2	5	2	0
DEC	3	1	1	2	1	9	1	0	1	DEC	1	1	1	2	4	2	2	1	1
mean	5	3	ß	11	11	3	9	2	9	mean	1	2	1	2	1	2	13	2	2
std dev	7	5	9	10	6	2	11	5	7	std dev	1	_	_	2	1	_	11	2	2
median	33	1	33	6	11	2	1	_	2	median	1	2	-	1	1	2	11	2	2
max	25	18	20	39	28	7	38	17	24	max	33	3	2	9	4	3	43	9	5
min	1	1	1	7	1	1	0	0	0	mim	0	0	0	0	0	1	2	0	0

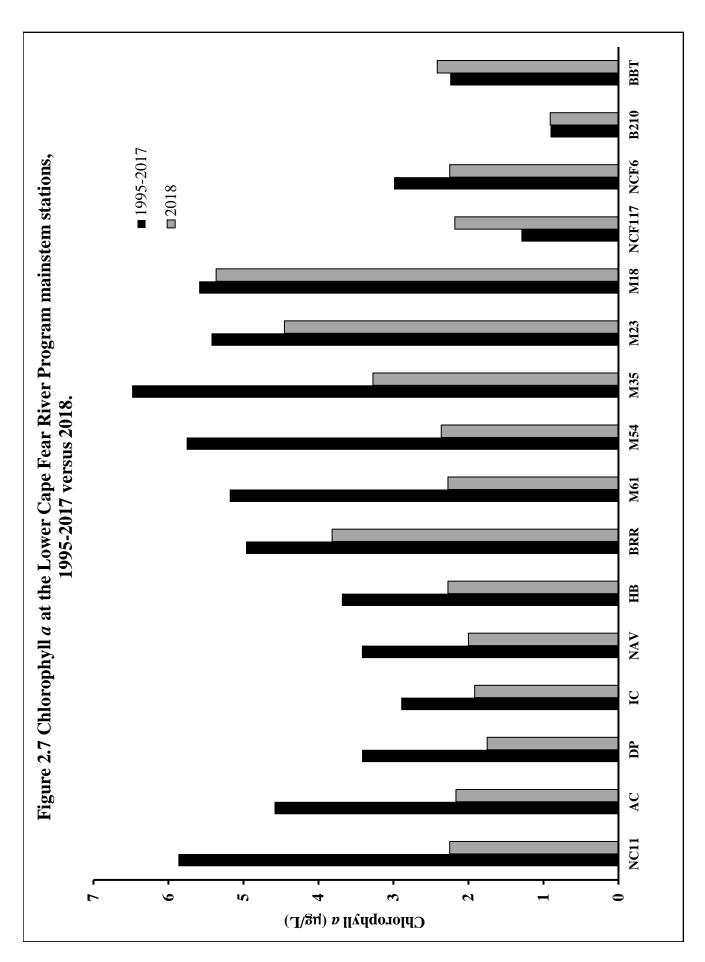


Table 2.16 Fecal Coliform (cfu/100 mL) and Enterococcus (MPN) during 2018 at the Lower Cape Fear River Program stations.

	N	7	4	ζ	MOTO		Ē		aga	1717	A SEA	3074	200	1/10
	NCII	AC		1	INCEO		8		DWW	TOTAL	+CIVI	CCIVI	C7141	INTIO
JAN	19	19		37	5		91	JAN	31	51	2	10	2	20
FEB	390	290		172	10		55	FEB	22	57	94	75	29	101
TAR	28	28		10	37		10	MAR	26	85	63	20	10	96
IPR	46	5		28	55		46	APR	5	5	10	5	S	5
IAY	19	73		19	73		82	MAY	20	41	41	62	20	20
N	14	23		32	43		37	JUN	30	31	20	56	68	5
IUL	46	181		19	230		46	JUL	10	31	5	5	S	5
NG	127	181		100	5		91	AUG	20	10	10	5	10	10
SEP	19	28		91	280			SEP						
CT	55	37		145	819		10	OCT	10	20	20	5	5	5
10V	55	55		S	109		28	NOV	5	10	S	S	10	5
ŒC	320	300		91	37		5	DEC	20	20	85	31	31	5
nean	95	102	51	62	142	87	46	mean	25	33	33	23	23	25
d dev	121	103		54	221		30	std dev	24	23	32	24	27	35
max	390	300		172	819		91	max	26	85	94	75	68	101
min	14	5		5	5		5	min	5	5	5	5	5	5
omean	50	55		39	5.		32	Geomean	17	25	19	13	13	12

	ANC	SAR	CS	NC403	PB	LRC	ROC	NCF117	SC-CH		B210	col	SRWC	6RC	Γ CO	GCO	\mathbf{SR}	BRN	HAM
$_{ m JAN}$	37	28	5	5	19	37	109	163	340	$\mathbf{1AN}$	37	172	190	530	340	145	210	91	728
FEB	10	82	37	37	5	19	163	240	49	FEB	28	19	55	55	37	37	28	73	1,180
MAR	109	145	82	163	190	28	728	46	73	MAR	19	46	37	64	28	73	73	136	199
APR	530	210	46	163	73	136	340	28	154	APR	19	37	440	1,460	480	199	240	310	1,550
MAY	37	145	163	1,270	340	163	410	37	200	MAY	64	109	28	55	290	154	127	136	217
NOL	91	145	28	260	235	73	340	260	136	NUL	55	118	37	73	73	100	2	240	91
JUL	240	37	127	200	000,09	320	910	10	217	TOL	55	109	210	136	570	19	430	520	217
AUG	250	270	370	250	1,730	355	340	37	270	AUG	100	728	19	460	370	300	163	819	260
SEP										SEP									
OCT	37	144	250	270	3000	480	172	1,180	480	OCT	28	10	100	200	91	127	172	270	1,000
NOV	28	73	19	82	24	37	240	46	145	NOV	82	82	136	91	73	230	118	320	430
DEC	19	28	5	5	5	5	64	10	5	DEC	37	28	28	19	19	28	37	37	55
mean	126	119	103	246	996'5	150	347	187	189	mean	48	133	116	586	216	128	151	897	539
std dev	151	74	112	337	17,111	155	248	326	129	std dev	25	194	121	405	191	85	110	219	479
max	37	270	370	1,270	000,09	480	910	1,180	480	max	100	728	440	1,460	570	300	430	819	1,550
min	10	28	2	5	5	2	64	10	5	mim	19	10	19	19	19	19	28	37	55
Geomean	92	93	49	66	172	73	267	99	127	Geomea	41	29	72	133	123	95	114	191	340

